UNIVERSITY VISION AND MISSION # VISION B.S. Abdur Rahman Institute of Science & Technology aspires to be a leader in Education, Training and Research in Engineering, Science, Technology and Management and to play a vital role in the Socio-Economic progress of the Country. # **MISSION** - To blossom into an internationally renowned University - To empower the youth through quality education and to provide professional leadership - To achieve excellence in all its endeavors to face global challenges - To provide excellent teaching and research ambience - To network with global Institutions of Excellence, Business, Industry and Research Organizations - To contribute to the knowledge base through Scientific enquiry, Applied Research and Innovation # VISION AND MISSION OF THE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING # VISION The vision of the Department of Computer Science and engineering is to impart quality education, inculcate professionalism and enhance the problem solving skills of the students in the domain of Computer Science and Engineering with a focus to make them industry ready, involve in possible areas of research, to pursue and have continual professional growth. # **MISSION** - Equip the students with strong fundamental concepts, analytical capability, programming and problem solving skills. - Create an ambience of education through faculty training, self learning, sound academic practices and research endeavors. - Facilitate a research culture in the department leading to high quality publications and funded projects. - To identify potential areas of research and create centre of excellence in those areas. - Provide opportunities to promote organizational and leadership skills in students through various extra – curricular activities. - Expose the students to emerging and upcoming technologies through cocurricular events. - To make the students as for as possible industry ready to enhance their employability in the industries. - To improve department industry collaboration through internship programme and interaction with professional society through seminar/workshops. - Imbibe social awareness and responsibility in students to serve the society. | B. lech. Computer Sc | cience & Engg. | | | |----------------------|----------------|--|--| # PROGRAMME EDUCATIONAL OBJECTIVES AND OUTCOMES # **B.Tech.** (Computer Science and Engineering) # PROGRAMME EDUCATIONAL OBJECTIVES - To introduce the fundamentals of science and engineering concepts essential for a computer engineer - To inculcate the knowledge of mathematical foundations and algorithmic principles for effective problem solving - To provide knowledge in computer science, modeling & design of computer based systems - To impart knowledge to analyze, design, test and implement software required for various applications - To hone personality skills, trigger social commitment and inculcate societal responsibilities. # PROGRAMME OUTCOMES On completion of the programme the graduate will - Demonstrate the capability to apply science, engineering, mathematical knowledge to understand the principles and concepts related to computer science - Possess knowledge and skills in art of programming and use of appropriate computer application tools - Design, develop, test and implement computer based solutions to real world problems - Understand the impact of contemporary issues of the society and develop solutions - Be able to demonstrate professional competence through acquired soft skills | B.Tech. Computer Sci | ence & Engg. | | | |----------------------|--------------|--|--| # REGULATIONS 2013 FOR B.TECH. DEGREE PROGRAMMES (WITH AMENDMENTS INCORPORATED TILL JUNE 2014) | B.Tech. Computer Sc | ience & Engg. | | | |---------------------|---------------|--|--| # REGULATIONS - 2013 FOR B.TECH. DEGREE PROGRAMMES # 1.0 PRELIMINARY DEFINITIONS & NOMENCLATURE In these Regulations, unless the context otherwise requires: - i) "Programme" means B.Tech. Degree Programme. - ii) **"Branch"** means specialization or discipline of B.Tech Degree Programme like Civil Engineering, Mechanical Engineering, etc., - "Course" means a theory or practical subject that is normally studied in a semester, like Mathematics, Physics, Engineering Graphics, Computer Practice, etc.. - iv) "University" means B.S.Abdur Rahman University. - v) "Dean (Academic Affairs)" means the Dean (Academic Affairs) of B.S. Abdur Rahman University. - vi) "Dean (Student Affairs)" means the Dean (Students Affairs) of B.S.Abdur Rahman University. - vii) "Controller of Examinations" means the Controller of Examination of B.S. Abdur Rahman University, who is responsible for conduct of examinations and declaration of results. # 2.0 ADMISSION - **2.1a)** Candidates for admission to the first semester of the eight semester B.Tech. degree programme shall be required to have passed the Higher Secondary Examination of the (10+2) curriculum (Academic stream) prescribed by the appropriate authority or any other examination of any university or authority accepted by the University as equivalent thereto. - 2.1b) Candidates for admission to the third semester of the eight semester B.Tech. programme under lateral entry scheme shall be required to have passed the Diploma examination in Engineering / Technology of the Department of Technical Education, Government of Tamil Nadu or any other examination of any other authority accepted by the University as equivalent thereto. - 2.2 Notwithstanding the qualifying examination the candidate might have passed, the candidate shall also write an entrance examination prescribed by the University for admission. The entrance examination shall test the proficiency of the candidate in Mathematics, Physics and Chemistry on the standards prescribed for plus two academic stream. - 2.3 The eligibility criteria such as marks, number of attempts and physical fitness shall be as prescribed by the University from time to time. # 3.0 BRANCHES OF STUDY **3.1** Regulations are applicable to the following B.Tech. degree programmes in various branches of Engineering and Technology, each distributed over eight semesters with two semesters per academic year. # **B.TECH. DEGREE PROGRAMMES:** - 1. Aeronautical Engineering - 2. Automobile Engineering - 3. Civil Engineering - 4. Computer Science and Engineering - 5. Electrical and Electronics Engineering - 6. Electronics and Communication Engineering - 7. Electronics and Instrumentation Engineering - 8. Information Technology - 9. Manufacturing Engineering - 10. Mechanical Engineering - 11. Polymer Engineering - 12. Biotechnology - 13. Cancer Biotechnology - 14. Food Biotechnology # 4.0 STRUCTURE OF THE PROGRAMME - **4.1** Every Programme will have a curriculum with syllabi consisting of theory and practical courses such as, - i) Basic Sciences (BS) - ii) Humanities & Social Sciences (HS) - iii) Management Sciences (MS) - iv) Engineering Sciences Fundamentals (ESF) - v) Engineering Core Courses (EC) - vi) Professional Electives (PE) - vii) General Electives (GE) - viii) Workshop practice, laboratory work, industrial training, seminar presentation, project work, etc. - **4.2** Each course is normally assigned certain number of credits : one credit per lecture period per week one credit per tutorial period per week one credit for two to three periods and two credits for four periods of laboratory or practical courses one credit for two periods of seminar / project work per week one credit for two weeks of industrial training - **4.3** Each semester curriculum shall normally have a blend of lecture courses not exceeding seven and practical courses not exceeding four. - **4.4** For the award of the degree, a student has to earn a minimum total credits specified in the curriculum of the relevant branch of study. This minimum will be between 175 and 185 credits, depending on the program. - **4.5** The medium of instruction, examinations and project report shall be English, except for courses on languages other than English. # 5.0 DURATION OF THE PROGRAMME - 5.1 A student is ordinarily expected to complete the B.Tech. programme in eight semesters (six semesters in the case of a lateral entry scheme), but in any case not more than 14 continuous semesters reckoned from the date of first admission (12 semesters in the case of lateral entry student). - **5.2** Each semester shall consist of a minimum of 90 working days or 450 periods. - **5.3** Semester end examination will normally follow immediately after the last working day of the semester. #### 6.0 CLASS ADVISOR AND FACULTY ADVISOR #### 6.1 CLASS ADVISOR A faculty member will be nominated by the HOD as Class Advisor for the whole class (2nd to 8th semester). He/she is responsible for maintaining the academic, curricular and co-curricular
records of all students throughout their period of study. However, for the first semester alone the class advisors and faculty advisors will be nominated by first year coordinator. # 6.2 FACULTY ADVISOR To help the students in planning their courses of study and for general counseling on the academic programme, the Head of the Department of the students will attach a certain number of students to a faculty member of the department who shall function as Faculty Advisor for the students throughout their period of study. Such Faculty Advisor shall offer advice to the students on academic and personal matters, and guide the students in taking up courses for registration and enrolment every semester. # 7.0 COURSE COMMITTEE Common course offered to more than one discipline or group, shall have a "Course Committee", comprising all the faculty members teaching the common course with one of them nominated as Course Coordinator. The nomination of the course coordinator shall be made by the Head of the Department / Dean (Academic Affairs), depending on whether all the faculty members teaching the common course belong to the same department / different departments. # 8.0 CLASS COMMITTEE For the first semester, a common Class Committee will be constituted for all branches by the Dean (Academic Affairs). During other semesters, separate Class Committees will be constituted by the respective Head of the Department of the students - **8.1** The first semester Class Committee composition will be as follows: - i) The first semester Coordinator shall be the Chairman of the class committee - Course coordinators of all common courses. - iii) Faculty members of all individual courses. - iv) One male and one female first semester student of each class of B.Tech, program to be nominated by the first semester coordinator - v) All first semester class advisors and faculty advisors - **8.2** The composition of the class committee for each branch of B.Tech, from 2nd to 8th semester, will be as follows: - One senior faculty member preferably not teaching to the concerned class, appointed as Chairman by the Head of the Department - ii) Faculty members of individual courses - iii) Two students, (preferably one male and one female) of the class per group of 30 students or part thereof, to be nominated by the Head of the Department, in consultation with the faculty advisors. - iv) All faculty advisors and the class advisor of the class - v) Head of the Department - 8.3 The class committee shall meet at least thrice during the semester. The first meeting will be held within two weeks from the date of commencement of classes, in which the nature of continuous assessment for various courses and the weightages for each component of assessment will be decided for the first, second and third assessments. The second meeting will be held within a week after the date of first assessment report, to review the students' performance and for follow up action. The third meeting will be held within a week after the second assessment report, to review the students' performance and for follow up action. - **8.4** During these three meetings the student members representing the entire class, shall meaningfully interact and express opinions and suggestions of the class students to improve the effectiveness of the teaching-learning process. - 8.5 The class committee, excluding the student members, shall meet within 10 days from the last day of the semester end examination to analyze the performance of the students in all the components of assessments and decide the grades for students in each course. The grades for a common course shall be decided by the concerned course committee and shall be presented to the class committee(s) by the concerned course coordinator. # 9.0 REGISTRATION AND ENROLMENT - 9.1 Except for the first semester, every student shall register for the ensuing semester during a specified week before the semester end examination of the current semester. Every student shall submit a completed Registration form indicating the list of courses intended to be enrolled during the ensuing semester. Late registration along with a late fee will be permitted up to the last working day of the current semester. - 9.2 From the second year onwards, all students shall pay the prescribed fees for the year on a specific day at the beginning of the semester confirming the registered courses. Late enrolment along with a late fee will be permitted up to two weeks from the date of commencement of classes. If a student does not enroll, his/her name will be removed from rolls. - **9.3** The students of first semester shall register and enroll at the time of admission by paying the prescribed fees. - **9.4** A student should have registered for all preceding semesters before registering for a particular semester. # 10.1 CHANGE OF A COURSE A student can change an enrolled course within 15 days from the commencement of the course, with the approval of the Dean (Academic Affairs), on the recommendation of the Head of the Department of the student. # 10.2 WITHDRAWAL FROM A COURSE A student can withdraw from an enrolled course at any time before the second assessment for genuine reasons, with the approval of the Dean (Academic Affairs), on the recommendation of the Head of the Department of the student. # 11.0 TEMPORARY BREAK OF STUDY FROM A PROGRAMME A student can avail a onetime temporary break of study covering the current semester and/or next semester period with the approval of the Head of the Institution at any time before the start of third assessment of current semester, within the maximum period of 14 or 12 semesters as the case may be. If any student is debarred for want of attendance or suspended due to any act of indiscipline it will not be considered as break of study. A student availed break of study has to rejoin only in the same semester from where he left. # 12.0 CREDIT LIMIT FOR ENROLMENT & MOVEMENT TO HIGHER SEMESTER - **12.1** A student can enroll for a maximum of 30 credits during a semester including redo courses. - **12.2** The minimum credit requirement to move to the higher semester is - Not less than a total of 20 credits, to move to the 3rd semester - Not less than a total of 40 credits, (20 for lateral entry) to move to the 5th semester - Not less than a total of 60 credits, (40 for lateral entry) to move to the 7th semester # 13.0 ASSESSMENT PROCEDURE AND PERCENTAGE WEIGHTAGE OF MARKS **13.1** Every theory course shall have a total of four assessments during a semester as given below: | Assessment No. | Course
Coverage in
Weeks | Duration | Weightage
of Marks | |-------------------|--------------------------------|-----------|-----------------------| | Assessment 1 | 1 to 4 | 1.5 hours | 15% | | Assessment 2 | 5 to 8 | 1.5 hours | 15% | | Assessment 3 | 9 to 12 | 1.5 hours | 15% | | Attendance # | - | - | 5% | | Semester End Exam | Full course | 3 hours | 50 % | - # 76-80% 1 Mark ; 81-85 2 Marks ; 86-90 3 Marks ; 91-95 4 Marks and 96 100 5 Marks - **13.2** Appearing for semester end examination for each course is mandatory and a student should secure a minimum of 40% marks in each course in semester end examination for the successful completion of the course. - **13.3** Every practical course will have 60% weightage for continuous assessment and 40% for semester end examination. However, a student should have secured a minimum of 50% marks in the semester end practical examination. - 13.4 In the case of Industrial training, the student shall submit a report, which will be evaluated along with an oral examination by a committee of faculty members, constituted by the Head of the department. A progress report from the industry will also be taken into account for evaluation. - 13.5 In the case of project work, a committee of faculty members constituted by the Head of the Department will carry out three periodic reviews. Based on the project report submitted by the student(s), an oral examination (viva-voce) will be conducted as the semester end examination, for which one external examiner, approved by the Controller of Examinations, will be included. The weightage for periodic review will be 50% and remaining 50% for the project report and Viva Voce examination. - **13.6** Assessment of seminars and comprehension will be carried out by a committee of faculty members constituted by the Head of the Department. - 13.7 The continuous assessment marks earned for a course during his/her first appearance will be used for grading along with the marks earned in the semester-end examination / arrear examination for that course until he/she completes. # 14.0 SUBSTITUTE EXAMINATIONS - 14.1 A student who has missed, for genuine reasons, a maximum of one of the four assessments of a course may be permitted to write a substitute examination. However, permission to take up a substitute examination will be given under exceptional circumstances, such as accident, admission to a hospital due to illness, etc. - 14.2 A student who misses any assessment in a course shall apply in a prescribed form to the Head of the department / Dean within a week from the date of missed assessment. However the substitute tests and examination for a course will be conducted within two weeks after the last day of the semesterend examinations. # 15.0 ATTENDANCE REQUIREMENT AND SEMESTER / COURSE REPETITION **15.1** A student should secure not less than 75% overall attendance in that semester taking into account the total no. of periods in all courses put together attended by the student as against the total no. of periods in all courses offered during that semester. If a student who could secure overall attendance between 65% and 75% only in a particular semester due to medical reasons (hospitalization / accident / specific illness) or due to participation in the College / University / State / National / International level sports events with prior permission from the Officials
concerned shall be given exemption from the prescribed attendance requirement and he / she shall be permitted to appear for the current semester examinations. The students who do not fulfill the above attendance requirement will not be permitted to write the semester end examination and will not be permitted to move to next semester. Such students should repeat all the courses of the semester in the next Academic year. - 15.2 The faculty member of each course shall furnish the cumulative attendance details to the class advisor. The class advisor will consolidate and furnish the list of students who have earned less than 75% overall attendance, to the Dean (Academic Affairs) through the Head of the Department / School Dean. Thereupon, the Dean (Academic Affairs) shall issue orders preventing students from appearing for the semester end examination of all the courses of that semester. - 15.3 A student who is awarded "U" grade in a course will have the option of either to write semester end arrear examination at the end of the subsequent semesters, or to redo the course whenever the course is offered. Marks earned during the redo period in the continuous assessment for the course, will be used for grading along with the marks earned in the end-semester (re-do) examination. If any student obtained "U" grade, the marks earned during the redo period for the continuous assessment for that course will be considered for further appearance as arrears. - **15.4** If a student with "U" grade prefers to redo any particular course fails to earn the minimum 75% attendance while doing that course, then he/she will not be permitted to write the semester end examination and his / her earlier 'U' grade and continuous assessment marks shall continue. # 16.0 PASSING AND DECLARATION OF RESULTS AND GRADE SHEET 16.1 All assessments of a course will be made on absolute marks basis. However, the Class Committee without the student members shall meet within 10 days after the semester-end examination and analyze the performance of students in all assessments of a course and award letter grade. The letter grades and the corresponding grade points are as follows: | Letter Grade | Grade Points | |--------------|--------------| | S | 10 | | A | 9 | | В | 8 | | С | 7 | | D | 6 | | E | 5 | | U | 0 | | W | | | AB | | - "W" denotes withdrawal from the course. - "U" denotes unsuccessful performance in the course. - "AB" denotes absence for the semester end examination. - **16.2** A student who earns a minimum of five grade points ('E' grade) in a course is declared to have successfully completed the course. Such a course cannot be repeated by the student. - **16.3** The results, after awarding of grades, shall be signed by the Chairman of the Class Committee and Head of the Department and declared by the Controller of Examinations. - 16.4 Within one week from the date of declaration of result, a student can apply for revaluation of his / her semester-end theory examination answer scripts of courses, on payment of prescribed fee, through proper application to Controller of Examinations. HOD/Dean shall constitute a revaluation committee consisting of Chairman of the class committee as convener, the faculty member of the course and a senior member of faculty knowledgeable in that course. The committee shall meet within a week to revalue the answer scripts and submit its report to the Controller of Examinations for consideration and decision. - 16.5 After results are declared, grade sheets shall be issued to each student, which will contain the following details. The list of courses enrolled during the semester including Redo courses, if any, and the grade scored, the Grade Point Average (GPA) for the semester and the Cumulative Grade Point Average (CGPA) of all courses enrolled from first semester onwards. GPA is the ratio of the sum of the products of the number of credits of courses registered and the points corresponding to the grades scored in those courses, taken for all the courses, to the sum of the number of credits of all the courses in the semester. If Ci, is the number of credits assigned for the ith course and GPi is the Grade Point in the ith course $$GPA = \frac{\sum_{i=1}^{n} (C_i)(GPi)}{\sum_{i=1}^{n} C_i}$$ Where $n = number of courses$ The Cumulative Grade Point Average CGPA shall be calculated in a similar manner, considering all the courses enrolled from first semester. "W" grades will be excluded for calculating GPA. "U", "AB" and "W" grades will be excluded for calculating CGPA **16.6** After successful completion of the programme, the Degree will be awarded with the following classifications based on CGPA. | Classification | CGPA | |------------------------------|--| | First Class with Distinction | 8.50 and above and passing all the courses in first appearance and completing the programme within the normal 8 or 6 (for lateral entry) semesters | | First Class | 6.50 and above and completing the programme within a maximum of 10 or 8 (for lateral entry) semesters. | | Second Class | All others | However, to be eligible for First Class with Distinction, a student should not have obtained U grade in any course during his/her study and should have completed the U.G. programme within a minimum period covered by the minimum duration plus authorized break of study, if any (clause 11). To be eligible for First Class, a student should have passed the examination in all courses within the specified minimum number of semesters reckoned from his/her commencement of study plus two semesters. For this purpose, the authorized break of study will not be counted. The students who do not satisfy the above two conditions will be classified as second class. For the purpose of classification, the CGPA will be rounded to two decimal places. For the purpose of comparison of performance of students and ranking, CGPA will be considered up to three decimal places. # 17.0 ELECTIVE CHOICE: OPTION TO DO PROJECT ALONE IN FINAL SEMESTER - 17.1 Apart from the various elective courses listed in the curriculum for each branch of specialization, the student can choose a maximum of two electives from any other specialization under any department, during the entire period of study, with the approval of the Head of the parent department and the Head of the other department offering the course. - 17.2 In the curriculum of eighth Semester, along with the project work, if two elective courses alone are listed, then the Dean (Academic Affairs) may permit a student, as per approved guidelines, on the recommendation of the Head of the department, to do a full semester major industrial project work. In such a case, the above two elective courses or any other two elective courses in lieu thereof have to be enrolled during any semester preceding or succeeding the project work, if offered. # 18.0 PERSONALITY AND CHARACTER DEVELOPMENT - **18.1** All students shall enroll, on admission, in any of the personality and character development programmes, NCC / NSS / NSO / YRC / Rotaract and undergo practical training. - National Cadet Corps (NCC) will have to undergo specified number of parades. - **National Service Scheme (NSS)** will have social service activities in and around Chennai. - National Sports Organization (NSO) will have sports, games, drills and physical exercises. - Youth Red Cross (YRC) will have social service activities in and around Chennai. - Rotaract will have social service activities in and around Chennai. # 19.0 DISCIPLINE **19.1** Every student is required to observe disciplined and decorous behavior both inside and outside the campus and not to indulge in any activity which will tend to bring down the prestige of the University. **19.2** Any act of indiscipline of a student, reported to the Dean (Student Affairs), through the HOD / Dean will be referred to a Discipline and Welfare Committee, nominated by the Vice-Chancellor, for taking appropriate action. # 20.0 ELIGIBILITY FOR THE AWARD OF DEGREE - **20.1** A student shall be declared to be eligible for the award of B.Tech. degree provided the student has: - successfully completed all the required courses specified in the programme curriculum and earned the number of credits prescribed for the specialization, within a maximum period of 14 semester (12 semesters for lateral entry) from the date of admission, including break of study. - ii) no dues to the Institution, Library, Hostels - iii) no disciplinary action pending against him/her. - **20.2** The award of the degree must have been approved by the University. # 21.0 POWER TO MODIFY Notwithstanding all that has been stated above, the Academic Council has the right to modify the above regulations from time to time. # CURRICULUM AND SYLLABI FOR B.TECH. COMPUTER SCIENCE AND ENGINEERING (Eight Semesters / Full Time) # **CURRICULUM** # SEMESTER I | | Course
Group | Course
Code | Course Title | L | Т | Р | С | |----|-----------------|-------------------------------|--|---|---|---|----| | 1 | BS | MAB1181 | Algebra, Geometry and Calculus | 3 | 1 | 0 | 4 | | 2 | HS | ENB1181
FRB1181
ISB1181 | English* French* Arabic* | 3 | 0 | 0 | 3 | | 3 | BS | PHB1181 | Physics | 3 | 0 | 0 | 3 | | 4 | BS | CHB1181 | Chemistry | 3 | 0 | 0 | 3 | | 5 | ESF | GEB1101 | Engineering Graphics | 2 | 0 | 3 | 3 | | 6 | HS | SSB1181 | Introduction to Economics | 3 | 0 | 0 | 3 | | 7 | BS | PHB1182 | Physics Lab | 0 | 0 | 2 | 1 | | 8 | BS | CHB1182 | Chemistry Lab | 0 | 0 | 2 | 1 | | 9 | ESF | GEB1102 | Basic Engineering Practices Laboratory | 0 | 0 | 2 | 1 | | 10 | ESF | GEB1103 | Computer Programming & Applications | 2 | 0 | 2 | 3 | | | | | | | | | 25 | ^{*} Any one language # **SEMESTER II** | | Course
Group | Course
Code | Course Title | L | Т | Р | С | |----|-----------------
----------------|----------------------------------|---|---|---|---| | 1. | BS | MAB1282 | Advanced Calculus | 3 | 1 | 0 | 4 | | 2. | BS | PHB1283 | Physics of Engineering Materials | 3 | 0 | 0 | 3 | | 3. | HS | SSB1182 | Sociology, Ethics & Human Values | 3 | 0 | 0 | 3 | | 4. | ESF | GEB1211 | Basic Engineering Mechanics | 3 | 1 | 0 | 4 | | B.Tech. | Computer | Science | & | Engg. | |---------|----------|---------|---|-------| |---------|----------|---------|---|-------| | 5. | ESF | EEB1281 | Introduction to Electrical & | | | | | |----|-----|---------|--------------------------------------|---|---|---|----| | | | | Electronics Engineering | 3 | 0 | 0 | 3 | | 6. | ESF | CSB1211 | Analog and Digital Communication | 3 | 0 | 0 | 3 | | 7. | HS | ENB1282 | Written Communication | 0 | 0 | 2 | 1 | | 8. | ESF | EEB1282 | Electrical & Electronics | | | | | | | | | Engineering Lab | 0 | 0 | 3 | 1 | | 9. | BS | PHB1284 | Physics of Engineering Materials Lab | 0 | 0 | 2 | 1 | | | | | | | | | 23 | # SEMESTER III | | Course
Code | Course Title | L | Т | Р | С | |----|----------------------------|---|---|--|---|---| | BS | MAB2181 | Transforms and Applications | 3 | 1 | 0 | 4 | | HS | SSB2181 | Law for Engineers | 3 | 0 | 0 | 3 | | EC | CSB2101 | Object Oriented Programming | 3 | 0 | 0 | 3 | | EC | CSB2102 | Data structures | 3 | 0 | 0 | 3 | | EC | CSB2103 | Digital Logic Design | 3 | 1 | 0 | 4 | | EC | CSB2104 | Computer Architecture | 3 | 0 | 0 | 3 | | HS | ENB2181 | Oral Communication | 0 | 0 | 2 | 1 | | EC | CSB2105 | Object Oriented Programming Lab | 0 | 0 | 3 | 1 | | EC | CSB2106 | Data Structures Lab | 0 | 0 | 3 | 1 | | EC | CSB2107 | Digital Lab | 0 | 0 | 3 | 1 | | | Group BS HS EC EC EC HS EC | Group Code BS MAB2181 HS SSB2181 EC CSB2101 EC CSB2102 EC CSB2103 EC CSB2104 HS ENB2181 EC CSB2105 EC CSB2106 | GroupCodeBSMAB2181Transforms and ApplicationsHSSSB2181Law for EngineersECCSB2101Object Oriented ProgrammingECCSB2102Data structuresECCSB2103Digital Logic DesignECCSB2104Computer ArchitectureHSENB2181Oral CommunicationECCSB2105Object Oriented Programming LabECCSB2106Data Structures Lab | GroupCodeBSMAB2181Transforms and Applications3HSSSB2181Law for Engineers3ECCSB2101Object Oriented Programming3ECCSB2102Data structures3ECCSB2103Digital Logic Design3ECCSB2104Computer Architecture3HSENB2181Oral Communication0ECCSB2105Object Oriented Programming Lab0ECCSB2106Data Structures Lab0 | Group Code BS MAB2181 Transforms and Applications 3 1 HS SSB2181 Law for Engineers 3 0 EC CSB2101 Object Oriented Programming 3 0 EC CSB2102 Data structures 3 0 EC CSB2103 Digital Logic Design 3 1 EC CSB2104 Computer Architecture 3 0 HS ENB2181 Oral Communication 0 0 EC CSB2105 Object Oriented Programming Lab 0 0 EC CSB2106 Data Structures Lab 0 0 | Group Code BS MAB2181 Transforms and Applications 3 1 0 HS SSB2181 Law for Engineers 3 0 0 EC CSB2101 Object Oriented Programming 3 0 0 EC CSB2102 Data structures 3 0 0 EC CSB2103 Digital Logic Design 3 1 0 EC CSB2104 Computer Architecture 3 0 0 HS ENB2181 Oral Communication 0 0 2 EC CSB2105 Object Oriented Programming Lab 0 0 3 EC CSB2106 Data Structures Lab 0 0 3 | | | | | SEMESTER IV | | | | | |-----------------------------|----------------------------|--|---|---------------------------------|----------------------------|--------------------------------------|----------------------------| | SI.
No. | Course
Group | Course
Code | Course Title | L | Т | Р | С | | 1. | BS | MAB2285 | Discrete Mathematics | 3 | 1 | 0 | 4 | | 2. | EC | CSB2211 | Database Management Systems | 3 | 0 | 0 | 3 | | 3. | EC | CSB2212 | Operating Systems | 3 | 0 | 0 | 3 | | 4. | EC | CSB2213 | Microprocessors and Microcontrollers | 3 | 0 | 0 | 3 | | 5. | EC | CSB2214 | Principles of Programming | 3 | 0 | 0 | 3 | | 6. | BS | LSB2181 | Biology for Engineers | 3 | 0 | 0 | 3 | | 7. | HS | ENB2282 | Confidence Building & Behavioral Skill | 0 | 0 | 2 | 1 | | 8. | EC | CSB2215 | DBMS Lab | 0 | 0 | 3 | 1 | | 9. | EC | CSB2216 | Operating System Lab | 0 | 0 | 3 | 1 | | 10. | EC | CSB2217 | Microprocessor and Microcontroller Lab | 0 | 0 | 3 | 1 | | | | | | | | | 23 | SEMESTER V | | | | | | SI.
No. | Course
Group | Course
Code | SEMESTER V Course Title | L | т | Р | С | | _ | | Code | | L | T | P | c | | No. | Group | Code | Course Title | _ | | _ | | | No.
1. | Group
EC | Code
CSB3101 | Course Title Algorithm Design and Analysis | 3 | 0 | 0 | 3 | | No. 1. 2. | Group
EC
EC | Code
CSB3101
CSB3102 | Course Title Algorithm Design and Analysis Object Oriented Software Engg | 3 | 0 | 0 | 3 | | No. 1. 2. 3. | Group
EC
EC
EC | Code CSB3101 CSB3102 CSB3103 | Course Title Algorithm Design and Analysis Object Oriented Software Engg Computer Networks | 3 3 3 | 0 0 | 0 0 | 3 3 3 | | No. 1. 2. 3. 4. | Group EC EC EC | Code CSB3101 CSB3102 CSB3103 CSB3104 | Course Title Algorithm Design and Analysis Object Oriented Software Engg Computer Networks Theory of Computation | 3
3
3
3 | 0 0 0 | 0 0 0 | 3
3
3
3 | | No. 1. 2. 3. 4. 5. | Group EC EC EC MS | Code CSB3101 CSB3102 CSB3103 CSB3104 MSB3181 | Course Title Algorithm Design and Analysis Object Oriented Software Engg Computer Networks Theory of Computation Management of Business Organization | 3
3
3
3 | 0 0 0 0 | 0
0
0
0
0 | 3
3
3
3 | | No. 1. 2. 3. 4. 5. | Group EC EC EC MS PE | Code CSB3101 CSB3102 CSB3103 CSB3104 MSB3181 ENB3181 | Course Title Algorithm Design and Analysis Object Oriented Software Engg Computer Networks Theory of Computation Management of Business Organization Professional Elective I | 3
3
3
3
3 | 0
0
0
0
0 | 0
0
0
0
0
0 | 3
3
3
3
3 | | No. 1. 2. 3. 4. 5. 6. 7. | Group EC EC EC MS PE HS | Code CSB3101 CSB3102 CSB3103 CSB3104 MSB3181 ENB3181 CSB3105 | Course Title Algorithm Design and Analysis Object Oriented Software Engg Computer Networks Theory of Computation Management of Business Organization Professional Elective I Career Building & People Skill | 3
3
3
3
3
0 | 0
0
0
0
0 | 0
0
0
0
0
0
2
3 | 3
3
3
3
3 | | No. 1. 2. 3. 4. 5. 6. 7. 8. | Group EC EC EC MS PE HS EC | Code CSB3101 CSB3102 CSB3103 CSB3104 MSB3181 ENB3181 CSB3105 CSB3106 | Course Title Algorithm Design and Analysis Object Oriented Software Engg Computer Networks Theory of Computation Management of Business Organization Professional Elective I Career Building & People Skill Algorithm analysis Lab | 3
3
3
3
3
0
0 | 0
0
0
0
0
0 | 0
0
0
0
0
0
2
3 | 3
3
3
3
3
1 | | B.Tech. | Computer | Science | & | Engg. | |---------|----------|---------|---|-------| |---------|----------|---------|---|-------| | | | | SEMESTER VI | | | | | |--------------------------|-------------------------|--|---|----------------------------|-----------------------|---------------------------------|-----------------------| | SI.
No. | Course
Group | Course
Code | Course Title | L | Т | Р | С | | 1. | EC | CSB3211 | Mobile and Pervasive Computing | 3 | 0 | 0 | 3 | | 2. | EC | CSB3212 | Introduction to Compiler construction
| 3 | 0 | 0 | 3 | | 3. | EC | CSB3213 | Artificial Intelligence | 3 | 0 | 0 | 3 | | 4. | BS | GEB3201 | Environmental Science and Engineering | 3 | 0 | 0 | 3 | | 5. | PE | | Professional Elective II | 3 | 0 | 0 | 3 | | 6. | PE | | Professional Elective III | 3 | 0 | 0 | 3 | | 7. | EC | CSB3214 | Mobile and Pervasive Computing Lab | 0 | 0 | 3 | 1 | | 8. | EC | CSB3215 | Compiler Techniques Lab | 0 | 0 | 3 | 1 | | 9. | EC | CSB3216 | FOSS Lab | 0 | 0 | 3 | 1 | | | | | | | | | 21 | SEMESTER VII | | | | | | SI.
No. | Course
Group | Course
Code | SEMESTER VII Course Title | L | т | Р | С | | • • • • | | | | L | T | P | c | | No. | Group | Code
CSB4101 | Course Title | | | | | | No. 1. | Group
EC | Code
CSB4101
CSB4102 | Course Title Information Security | 3 | 0 | 0 | 3 | | No. 1. 2. | Group
EC
EC | Code
CSB4101
CSB4102 | Course Title Information Security Data Mining & Warehousing | 3 | 0 | 0 | 3 | | No. 1. 2. 3. | Group
EC
EC
EC | Code
CSB4101
CSB4102 | Course Title Information Security Data Mining & Warehousing Distributed Computing | 3 3 3 | 0
0
0 | 0
0
0 | 3 3 3 | | No. 1. 2. 3. 4. | Group EC EC EC PE | Code
CSB4101
CSB4102 | Course Title Information Security Data Mining & Warehousing Distributed Computing Professional Elective IV | 3
3
3
3 | 0
0
0 | 0
0
0
0 | 3
3
3 | | No. 1. 2. 3. 4. 5. | Group EC EC EC PE PE | Code
CSB4101
CSB4102 | Course Title Information Security Data Mining & Warehousing Distributed Computing Professional Elective IV Professional Elective V | 3
3
3
3 | 0
0
0
0 | 0
0
0
0 | 3
3
3
3 | | No. 1. 2. 3. 4. 5. | Group EC EC EC PE PE GE | Code
CSB4101
CSB4102
CSB4103 | Course Title Information Security Data Mining & Warehousing Distributed Computing Professional Elective IV Professional Elective V General Elective I | 3
3
3
3
3 | 0
0
0
0
0 | 0
0
0
0
0 | 3
3
3
3
3 | | No. 1. 2. 3. 4. 5. 6. 7. | Group EC EC EC PE PE GE | Code CSB4101 CSB4102 CSB4103 CSB4104 CSB4105 | Course Title Information Security Data Mining & Warehousing Distributed Computing Professional Elective IV Professional Elective V General Elective I Mini Project | 3
3
3
3
3
0 | 0
0
0
0
0 | 0
0
0
0
0
0
3 | 3
3
3
3
3 | | | | | - 33 | | | | |----|-----------------|----------------|--------------------------|---|---|------| | | | | SEMESTER VIII | | | | | | Course
Group | Course
Code | Course Title | L | Т | P C | | 1. | PE | | Professional Elective VI | 3 | 0 | 0 3 | | 2. | GE | | General Elective II | 3 | 0 | 0 3 | | 3. | EC | CSB4211 | Project | 0 | 0 | 18 9 | | | | | | | | 15 | **Total Credits: 175** # PROFESSIONAL ELECTIVES | SI.
No. | Course
Group | Course
Code | Course Title | |------------|-----------------|----------------|-------------------------------| | 1 | PE | CSBX01 | Network Management | | 2 | PE | CSBX02 | High Speed Networks | | 3 | PE | CSBX03 | Graph Theory | | 4 | PE | CSBX04 | Mobile Ad Hoc Networks | | 5 | PE | CSBX05 | Wireless Sensor Networks | | 6 | PE | CSBX06 | Ubiquitous Computing | | 7 | PE | CSBX07 | Routing Protocols | | 8 | PE | CSBX08 | Cloud Computing | | 9 | PE | CSBX09 | TCP/ IP | | 10 | PE | CSBX10 | Embedded Systems | | 11 | PE | CSBX11 | Hacking Techniques | | 12 | PE | CSBX12 | Bio Inspired Computing | | 13 | PE | CSBX13 | Cyber Forensics | | 14 | PE | CSBX14 | Mobile Computing Technologies | | 15 | PE | CSBX15 | Distributed Computing | | 16 | PE | CSBX16 | Complex Networks | | 17 | PE | CSBX17 | Mobile Commerce | | 18 | PE | CSBX18 | Service Oriented Architecture | |----|----|--------|--| | 19 | PE | CSBX19 | Web Engineering | | 20 | PE | CSBX20 | Internet Technologies | | 21 | PE | CSBX21 | Game Theory | | 22 | PE | CSBX22 | Introduction To Big Data | | 23 | PE | CSBX23 | Xml And Web Services | | 24 | PE | CSBX24 | Information Retrieval | | 25 | PE | CSBX25 | Language Technologies | | 26 | PE | CSBX26 | Clustering Techniques | | 27 | PE | CSBX27 | Knowledge Engineering | | 28 | PE | CSBX28 | Visualization Techniques Q | | 29 | PE | CSBX29 | Data Warehousing And Business Intelligence | | 30 | PE | CSBX30 | Web Mining | | 31 | PE | CSBX31 | Content Management And Web Publishing | | 32 | PE | CSBX32 | Software Requirements Engineering | | 33 | PE | CSBX33 | Software Testing Techniques | | 34 | PE | CSBX34 | Software Agents | | 35 | PE | CSBX35 | User Interface Design | | 36 | PE | CSBX36 | Pattern Recognization | | 37 | PE | CSBX37 | Foundations On Software Quality Assurance | | 38 | PE | CSBX38 | Software Development Methodologies | | 39 | PE | CSBX39 | Computer Graphics | | 40 | PE | CSBX40 | Foundation Of Project Management | | 41 | PE | CSBX41 | Software Process Model | | 42 | PE | CSBX42 | Software Maintenance | | 43 | PE | CSBX43 | Software Design Patterns | | 44 | PE | CSBX44 | Social Network Analysis | | 45 | PE | CSBX45 | Big Data Analytics | | | | | | # B.Tech. Computer Science & Engg. | 46 | PE | CSBX46 | Nosql Database | |----|----|---------|---------------------------| | 47 | PE | CSBX47 | Cyber Security | | 48 | PE | CSBX48 | Virtualization Techniques | | 49 | PE | ECB3101 | Digital Signal Processing | | 50 | PE | CSBX49 | Video Analytics | | 51 | PE | CSBX50 | Multimedia And Animation | # **GENERAL ELECTIVES** | • | Course
Group | Course
Code | Course Title Offering | g Department | |---|-----------------|----------------|--|--------------------| | 1. | GE | GEBX01 | Disaster Management | Civil | | 2. | GE | GEBX02 | Nano Technology | Physics | | 3. | GE | GEBX03 | Control Systems | EEE | | 4. | GE | GEBX04 | Green Design and Sustainability | Civil | | 5. | GE | GEBX05 | Knowledge Management | CSE | | 6. | GE | GEBX06 | Appropriate Technology | Civil / Mechanical | | 7. | GE | GEBX07 | System Analysis and Design | Mechanical | | 8. | GE | GEBX08 | Value Analysis and Engineering | Mechanical | | 9. | GE | GEBX09 | Optimization Techniques | Mathematics | | 10. | GE | GEBX10 | Engineering System Modeling and Simulation | Mechanical | | 11. | GE | GEBX11 | Supply Chain Management | CBS | | 12. | GE | GEBX12 | Total Quality Management | Mechanical | | 13. | GE | GEBX13 | Energy Studies | Mechanical | | 14. | GE | GEBX14 | Robotics | Mechanical | | 15. | GE | GEBX15 | Cyber security | Π | | 16. | GE | GEBX16 | Usability Engineering | CSE | | 17. | GE | GEBX17 | Industrial Safety | Mechanical | # SEMESTER I # MAB1181 ALGEBRA, GEOMETRY AND CALCULUS LTPC # **OBJECTIVES:** The course is aimed at - developing the skills of engineering students in the basics of chosen topics of Mathematics that are imperative for effective understanding of engineering subjects. - laying the foundation for learning further topics of Mathematics in higher semesters in a graded manner. - enabling the learners to appreciate the important role of mathematical concepts in engineering applications. # MODULE I MATRICES 8 Eigenvalue Problems – Eigenvalues and Eigenvectors of a real matrix, Engineering Applications – Properties of Eigenvalues and Eigenvectors – Cayley Hamilton Theorem (without proof) – Orthogonal matrices – orthogonal transformations of a symmetric matrix to diagonal form – Reduction of quadratic form to canonical form by orthogonal transformation. # **MODULE II VECTOR ALGEBRA** 6 Operations on vectors – Scalar Product, Vector Product, Projection of Vectors - Angle between two vectors - Gradient, divergence and curl. # MODULE III THREE DIMENSIONAL ANALYTICAL GEOMETRY 8 Direction cosines & ratios – angle between two lines – equations of a plane – equations of a straight line - coplanar lines - shortest distance between skew lines – sphere – tangent plane – plane section of a sphere – orthogonal spheres. # MODULE IV DIFFERENTIAL GEOMETRY 7 Curvature – Cartesian and polar coordinates – centre and radius of curvature – circle of curvature – involutes & evolutes – envelopes – properties of envelopes and evolutes. # MODULE V MULTI-VARIATE FUNCTIONS Functions of two variables – partial derivatives – total differential – Implicit Functions – Jacobians - Taylor's series expansion – maxima and minima – Lagrange's multiplier method. # MODULE VI ORDINARY DIFFERENTIAL EQUATIONS 8 8 Linear equations of second order with constant and variable coefficients – Simultaneous first order linear equations with constant coefficients – homogeneous equations of Euler's type – method of undetermined coefficients, method of variation of parameters. **Total Hours: 60** # **TEXT BOOKS:** - 1. Veerarajan.T., "Engineering Mathematics" (5th edition) Tata Mc Graw Hill Publishing Co. New Delhi, 2012. - 2. Grewal B.S., "Higher Engineering Mathematics" (42nd edition), Khanna Publishers, New Delhi, 2012. # REFERENCES: - 1. Kreyszig, E., "Advanced Engineering Mathematics", 10th edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore, 2001. - 2. Peter V. O'Neil, "Advanced Engineering Mathematics", 7th edition, Cengage Learning, 2011. - 3. Dennis G. Zill, Warren S. Wright, "Advanced Engineering Mathematics", 4th edition, Jones and Bartlett publishers, Sudbury, 2011. - 4. Alan Jeffrey, "Advanced Engineering Mathematics", Academic Press, USA, 2002. - 5. Ramana, B.V, "Higher Engineering Mathematics" Tata Mc Graw Hill Publishing Co. New Delhi, 2006. - 6. Venkataraman, M.K., "Engineering Mathematics", Volume I, 2nd edition, National Publishing Co., Chennai, 2003. # **OUTCOMES:** On completion of the course the students will be able to - solve Eigenvalue and Eigenvector problems. - solve three dimensional geometry problems. - use differential calculus for solving problems pertaining to engineering applications. ENB1181 ENGLISH L T P C 3 0
0 3 #### **OBJECTIVES:** - To enable students to use language appropriately and effectively - To help learners improve their vocabulary and to enable them speak fluently and appropriately in different contexts. - To help students develop listening skills for academic and professional purposes - To develop reading comprehension skills and enhance their ability to read official documents. - To develop their creative thinking and practice creative writing. # MODULE I BASIC LANGUAGE SKILLS AND GRAMMAR Conducting a language proficiency test in the language laboratory to assess the use of various parts of speech, vocabulary, phrasal verbs and idiomatic expressions of students. # MODULE II LISTENING 8 4 Listening to BBC radio plays and VOA special lessons to teach Phonetics, accent and intonation of spoken English Appreciation and critical review of popular movies like 'My Fair Lady', 'Sound of Music'. (Excerpts from the movies) - Historical/popular speeches made by Winston Churchill, Abraham Lincoln (Gettysberg's Address), Swami Vivekananda. # **MODULE III SPEAKING** 8 - (a) Self introduction pair work introducing one another short conversations exchanging opinions agreement /disagreement - (b) Short presentation (extempore speech) based on visuals Personal narrations # MODULE IV READING 8 Newspaper articles, circular, notices – Note making – vocabulary extension – Critical review of newspaper articles. (a) Science fiction- Issac Asimov's "The Dead Past" (Abridged version) -Wings of Fire – Creative thinking – retelling a story with different ending; critical appreciation of plot and characters # MODULE V CREATIVE WRITING 8 - (a) Writing slogans for Advertisements - (b) Writing descriptive paragraphs based on visuals # MODULE VI ENGLISH FOR ACADEMIC AND BUSINESS PURPOSES 9 - (a) English for academic purpose: letters to the editor, letter seeking permission for industrial visit, letter inviting a dignitary for technical symposium - (b) English for Business purpose: Telephone etiquette telephone conversations taking and leaving phone messages. **Total Hours: 45** # **REFERENCES:** - 1. Mohan, Krishna, Meera Bannerjee, 'Developing Communication Skills', Macmillan India Ltd. Chennai (2001). - 2. Sen, Leena 'Communication Skills' Prentice Hall, New Delhi (2004). - 3. Rutherford, Andrea J. 'Basic Communication Skills For Technology' Pearson Education Asia (2002). - 4. Grant Taylor, 'English Conversation Practice' Tata Mcgraw Hill , New Delhi (2001) - 5. P.K.Dutt, G. Rajeevan and C.L.N. Prakash, 'A Course in Communication Skills', Cambridge University Press, India (2007). # **OUTCOME:** After completion of the course, students will have the ability to communicate correctly and effectively in academic and professional contexts through exposure and practice in LSRW skills. FRB1181 FRENCH L T P C 3 0 0 3 #### **OBJECTIVES:** - To improve their proficiency in French language. - To empower them for successful communication in their professional contexts. # DOSSIER 0 FENÊTRE SUR... 7 Contenus –l'alphabet - se présenter – les langues – les nationalités – les nombres de 0 à 60 – les adjectifs de nationalités – les verbes : s'appeler, être. L'acte de parole # DOSSIER 1 LES UNS, LES AUTRES.... 12 Contenus - Les salutations (formelles et informelles) - les jours de la semaine – Les articles définis – les adjectifs possessifs – la négation (ne....pas) – les verbes : avoir. Demander quelque chose – les mois de l'année – les nombres de 70 à 99 – les articles indéfinis – l'adjectif interrogatif (quel, quelle) Quelques événements culturels – donner des informations personnelles – indiquer ses gouts – l'expression des gouts – les prépositions (les noms de pays). L'acte de parole # **DOSSIER 2 ICI /AILLEURS** 12 Contenus – Parler de sa ville – Donner/ Demander des explications – les prépositions de lieu – articles contractés – pourquoi / parce que Auberges de jeunesse et hôtels – s'informer sur un hébérgement- quelques verbes et indications de direction – quelques formules de politesse. Le code postal et les départements le libellé d'une adresse en France – Ecrire une carte postale – Dire le temps qu'il fait – les adjectifs démonstratifs - Formules pour commencer / terminer. L'acte de parole # DOSSIER 3 SOLO OU DUO 14 Contenus – Les animaux de compagnie les animaux préférés des Français - parler de sa profession – les professions - les activités sportifs - les noms animaux – les verbes : aimer , adorer, détester, faire, aller. Nouveaux mode de rencontres – caractériser une personne (physique et psychologique) – les adjectifs qualificatifs – les pronoms toniques. Les sorties – proposer, refuser, accepter une sortie – fixer un rendez-vous – inviter – Donner des instructions – L'impératif : 2° personne – Le pronom on=nous – Les verbes : Pouvoir, vouloir, devoir. L'acte de parole L'examen oral **Total Hours: 45** # **TEXT BOOK:** 1. Alter EGO I – Goyal – Langers (0 – 5 Lessons) # **OUTCOMES:** On completion of the course, - The students will be able to deal with their clients effectively at global level. - Their proficiency in French Language will have improved. ISB1181 ARABIC L T P C 3 0 0 3 # **OBJECTIVES:** - To read and write in Arabic language. - To learn vocabulary of different fields - To develop situational communication skills. # MODULE I PREPARATORY ARABIC 7 Introducing Arabic Alphabets. Listening and Reading. Audio & Video aided listening, Tajweed listening, Writing Arabic Alphabets (connected & unconnected). Introducing words. Reading simple sentences. Learning names of the things in and around the class room. Exercises. # MODULE II FUNCTIONAL ARABIC 7 Listening Arabic texts, stories and action verbs Communicating Simple sentences. Jumla' Ismiyya and Jumla' Fi'liyya Situational Conversation: Greetings, Introduction. Classroom, College, Picnic. Dining and Kitchen. Reading skills. **Exercises** # MODULE III FUNCTIONAL ARABIC 8 Implication of effective listening. Audio aids. Writing Simple sentences. Communicating ordinal and cardinal numbers. Situational communication: Playground, library. Forms of plural – Sample sentences. Introduction to tenses. Exercises. # **MODULE IV FUNCTIONAL ARABIC** 8 Communication: Family, travel Market, Prayer hall Writing skills: Note making. Sequencing of sentences. Developing answers from the questions. Exercises. # MODULE V TECHNICAL ARABIC 8 Importance of technical communication. Reading and writing skills. Audio & Video aided listening. Introduction to Arabic terms related to administration. Situation communication: Air travel, Office administration, passport, visa. Exercises. ## MODULE VI TECHNICAL ARABIC 7 Situation communication: Contractual work, machineries and equipments.. Computer, internet browsing. Banking, Exercises. **Total Hours: 45** ## **TEXT BOOK:** Arabic for professionals and employees, Kilakarai Bukhari Aalim Arabic College, Chennai, India, 2013. ## **REFERENCES:** 1. Arabic Reader for Non Arabs (Ummul Qura University, Makkah), Kilakarai Bukhari Aalim Arabic College, 2005. # **OUTCOMES:** On successful completion of the course, the student will be able to: - write correct sentences in Arabic. - communicate in Arabic at primary level in working situations in the fields of engineering and administration. PHB1181 PHYSICS L T P C 3 0 0 3 #### **OBJECTIVES:** - To introduce basic physics concepts relevant to Engineering and Technology students. - To get familiarize with solving problems in basic physics. - To acquaint applications of physics for Engineering issues. ## MODULE I PROPERTIES OF MATTER 7 Elasticity – Stress strain diagram – Factors affecting elasticity – Twisting couple on a wire – Shaft – Torsion pendulum – Depression on a cantilever – Young's modulus by cantilever – Uniform and non-uniform bending – Viscosity. ## MODULE II CRYSTAL PHYSICS 6 Introduction – Space lattice – unit cell – Bravais lattices – Miller Indices for cubic crystals – Inter planar spacing in cubic lattice – Simple crystal structures – SC, BCC, FCC and HCP structures – Atomic radius, coordination number, Packing factor calculation – Crystal imperfections. ## MODULE III QUANTUM PHYSICS 7 Black body radiation – Planck's theory of radiation – Deduction of Wien's displacement law and Rayleigh – Jeans law from Planck's theory – Compton effect – Theory and experimental verification – Dual nature of matter – de Broglie's wavelength- Physical significance of wave function – Schroedinger wave equation – Time independent and time dependent wave equation – Particle in one dimensional box. #### MODULE IV WAVE OPTICS 9 Interference theory – Air wedge – Michelson interferometer – Diffraction – Fresnel and Fraunhofer diffraction - Polarization – Double refraction – Theory of plane polarized, circularly polarized and elliptically polarized light – Quarter wave plate, Half wave plate – Production and detection of plane, circularly and elliptically polarized lights – Photoelasticity – Photo elastic effect – Stress optic law – Effect of stressed model in a plane polariscope (qualitative) – Photo elastic bench. #### MODULE V LASER & FIBRE OPTICS Principle of spontaneous emission and stimulated emission - Characteristics of laser light -Einstein's A & B coefficients (derivation) – Population inversion - pumping - Nd:YAG laser – CO2 laser – Applications – Material processing and holography (construction and reconstruction of hologram)- Optical fibre – Principle and propagation of light in optical fibers – Numerical aperture and acceptance angle – Types of optical fibers - applications – Fibre optic communication system (block diagram only)- Fibre optic sensors (displacement and pressure sensors (qualitative), Medical endoscope. #### MODULE VI ULTROSONICS AND NDT 7 9 Ultrasonics – Production – Magnetostriction and piezo electric methods – Properties of ultrasonic waves – Detection of ultrasonic waves – Applications – Ultrasonic interferometer- Acoustical grating – SONAR – Depth of sea – Measurement of velocity of blood flow –
Non Destructive Testing (NDT) methods – Ultrasonic flaw detector – A,B & C scanning methods. **Total Hours: 45** #### **TEXT BOOKS:** - 1. Gaur R.K. and Gupta S.L., Engineering Physics, 8th edition, Dhanpat Rai Publications (P) Ltd., New Delhi, 2003. - 2. Palanisamy P.K., Physics for Engineers, Vol1 & Vol2, 2nd Edition, Scitech Publications, 2003. ## **REFERENCES:** - 1. Uma Mukherji, "Engineering Physics", Narosa Publishing House, New Delhi, 2007. - 2. Charles Kittel, "Introduction to solid state physics", 7th Edition, John Wiley & sons (ASIA) Pvt. Ltd, 2008. - 3. Avadhanulu M.N., "Engineering Physics", 1st Edition, S.Chand & Company Ltd., New Delhi, 2007. - 4. Schiff, "Quantum Mechanics", 3rd Edition, Tata McGraw-Hill Education, 2010. - 5. Rajendran V. and Marikani A., "Applied Physics for Engineers", 3rd Edition, Tata McGraw Hill Pub. Co. Ltd, New Delhi, 2003. # B.Tech. Computer Science & Engg. - 6. William T. Silfvast, "Laser Fundamentals", 2nd edition, Cambridge University Press, 2004. - 7. Arumugam M., "Engineering Physics", 5th Edition, Anuradha Agencies, 2003. ## **OUTCOMES:** At the end of the course, the students will be able to - apply the knowledge of properties of matter in Engineering Mechanics and Fluid Dynamics. - characterize Engineering materials - use Lasers for Fiber Optics Technology and Material Processing - do non-destrictive testing using Ultrasonic Techniques CHB1181 CHEMISTRY L T P C 3 0 0 3 #### **OBJECTIVES:** To make students conversant with the - Water quality for potable and industrial purposes. - Different engineering materials, their physico-chemical properties and specific applications. - Concept of electrochemistry, corrosion and theories of corrosion. - Principles of spectroscopy and applications. - Basic principles of green chemistry and the need for green processes in industries. #### MODULE I WATER TECHNOLOGY 8 Introduction – Impurities present in water – Hardness, Types of Hardness, Estimation of Hardness (EDTA method) (Problems) – Alkalinity, Estimation of Alkalinity – Disadvantages of hard water in industries – Conditioning methods: external treatment method: Ion exchange method – internal treatment: colloidal, phosphate, calgon, carbonate methods – drinking water standards (BIS) – treatment of domestic water: screening, sedimentation, coagulation, filtration, disinfection: by chlorination, UV treatment, ozonization – desalination and reverse osmosis (principle only). #### MODULE II ENGINEERING MATERIALS 8 Abrasives: Moh's scale of hardness – natural abrasives: diamond, corundum, emery, garnets and quartz – artificial abrasives: silicon carbide, boron carbide. Refractories: characteristics, classification – acidic, basic and neutral refractories, properties – refractoriness, refractoriness under load, dimensional stability, porosity, thermal spalling – general method of manufacture of refractories, properties and uses of high alumina bricks, magnesite and zirconia bricks. Nanomaterials: Definition – types of Nanomaterials; nanofilms, nanowires, carbon nanotubes, quantum dots and fullerenes (C_{e0}) – Size and shape dependent optical, electrical, thermal and mechanical properties; Synthesis of nanomaterials – Top down and bottom up approach; Applications of nanomaterials – Catalysis, Electronics and Telecommunication, Medicines, Composites and Energy. #### MODULE III ELECTROCHEMISTRY AND CORROSION 9 Construction of a cell – Standard and single electrode potential – electrochemical series – EMF and its measurement – Nernst equation, application and problems – Types of electrodes: standard hydrogen electrode, calomel electrode, ion selective electrode – glass electrode and determination of pH using glass electrode – polarization, overvoltage, decomposition potential (statements only) – Conductometric and potentiometric titrations. Corrosion: Definition – Dry corrosion and Wet corrosion with mechanisms – Factors influencing corrosion. #### MODULE IV CHEMISTRY OF POLYMERS 6 Monomers – functionality – polymer – degree of polymerization – classification – Polymerization techniques: addition, condensation and co-polymerization with example – mechanism of polymerization: free radical, cationic and anionic mechanism – thermoplastics and thermosetting plastics with examples – compounding and moulding of plastics: injection moulding and compression moulding. ## MODULE V SPECTROSCOPY 9 Electromagnetic spectrum – absorption of radiation – electronic, vibrational, translational and rotational – intensities of spectral lines – Beer-Lambert's Law (Problems) – Colorimetric analysis: estimation of concentration of a solution – Flame photometry: theory, instrumentation (block diagram only) and application – UV-Visible spectroscopy: Principles, instrumentation (block diagram only) and simple applications – IR spectroscopy – simple applications only. #### MODULE VI GREEN CHEMISTRY 5 Introduction – Significance – Industrial applications of green chemistry; Green technology – Latest green laboratory technique for saving experimental resources and infrastructural framework; Principles of green chemistry – R4M4 model (Reduce, Reuse, Recycle, Redesign; Multipurpose, Multidimensional, Multitasking, Multi-tracking) – Life cycle analysis technique (cradle to grave approach) **Total Hours: 45** #### **TEXT BOOKS:** - 1. Jain P.C and Renuka Jain, 'Physical Chemistry for Engineers', Dhanpat Rai and Sons, New Delhi. (2001). - 2. Paul T. Anastas, John C. Warner, 'Green Chemistry: Theory and Practice', Oxford University Press, (1998). #### **REFERENCES:** - 1. Bahl B.S., Tuli and Arun Bahl, 'Essentials of Physical Chemistry', S. Chand and Company Ltd., New Delhi, (2004). - 2. Kuriacose J.C. and Rajaram J, 'Chemistry in Engineering and Technology', Volume1, Tata McGraw- Hill publishing company, New Delhi, (1996). - 3. Puri B.R., Sharma L.R. and Madan S. Pathania, 'Principles of Physical Chemistry', Shoban Lal Nagin Chand and Co., Jalandhar, (2000). # **OUTCOMES:** At the end of the course, students will be able to - estimate the degree of hardness in water; solve related problems and treatment methods for potable water. - select materials for specific engineering applications. - use electrochemistry principles to understand the mechanism of corrosion. - analyze trace quantity of metals using instrumental methods. - realise the need of green practices in industries. #### **GEB1101** #### **ENGINEERING GRAPHICS** L T P C 2 0 3 3 #### **OBJECTIVES:** - To introduce the students of all engineering programs, the basic concepts of engineering drawing, which is the basic communication medium for all engineers - To provide an exposure to the appropriate standards for technical drawings - To provide practical exposure on important aspects like drawing analytic curves, orthographic projections, section of solids, development of surfaces, pictorial views and free hand drawing - To introduce computerized drafting #### MODULE I BASICS AND ENGINEERING CURVES 10 Drawing instruments, dimensioning, BIS conventions, types of lines, simple geometric constructions. Conic sections: ellipse, parabola, hyperbola Special curves: Cycloid, epicycloid, hypocycloid, involutes, helix ## MODULE II ORTHOGRAPHIC PROJECTION 8 Orthographic projection – first angle, third angle projection methods, free hand sketching of orthographic views of simple machine parts as per first angle projection. Projection of points. Commands and demonstration of drafting packages. ## MODULE III PROJECTION OF STRAIGHT LINES AND PLANES 10 Straight lines in first quadrant – true length and true inclinations, traces – rotating line and trapezoidal methods. Projection of plane lamina in first quadrant – trace of plane. ## MODULE IV PROJECTION OF SOLIDS 10 Projection of solids: Axis inclined to one reference plane only - prism, pyramid, cone, cylinder – change of position and auxiliary projection methods. # MODULE V SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES 10 Section of solids: prism, pyramid, cone, cylinder, and sphere – sectional views – true shape of sections - solids in simple position and cutting plane inclined to one reference plane only. Development of surfaces: truncated solids - prism, pyramid, cone, cylinder, frustum of cone and pyramid. #### MODULE VI PICTORIAL PROJECTIONS 12 Isometric projection: isometric scale - isometric projection and view of prism, pyramid, cylinder, cone, frustums and truncated solids. Perspective projection: prism, pyramid, cylinder, frustums – visual ray and vanishing point methods. **Total Hours: 60** #### **TEXT BOOK:** 1. N.D. Bhatt, 'Engineering Drawing' Charotar Publishing house, 46th Edition, (2003) # **REFERENCES:** - 1. K.V. Natarajan, 'A text book of Engineering Graphics', Dhanalakshmi publishers, Chennai. (2006) - 2. Venugopal. K, and V. Prabhu Raja, Engineering Graphics, New Age International (P) Ltd., Publication, Chennai. (2011) #### **OUTCOMES:** Students who complete this course will be able to: - draw various views of engineering components - graphically communicate their concepts and ideas on new designs #### SSB1181 # INTRODUCTION TO ECONOMICS L T P C 3 0 0 3 #### **OBJECTIVES:** - Primarily to give an overview of fundamentals of economics to the engineering students - In particular - To introduce the basic concepts of demand, supply and equilibrium. - To familiarize on National Income concepts - To provide fundamental concepts of money, banking and exchange. - To give an idea on industrial sector, markets and trade. - To give an overview on five year plans, budget, policies and taxation. - To provide an overview of Indian economy and the role of engineers in economic development. #### MODULE I INTRODUCTION 8 Classification of economy – open and closed economy – sectors of economy – Basic principles of micro economics – supply ,demand and equilibrium, elasticity of demand- pricing models. ## MODULE II NATIONAL INCOME DETERMINATION 7 National Income concepts – GNP, GDP, disposable Income; Aggregate
demand and Aggregate supply, macroeconomic equilibrium - concepts of MPS, APS, MPC APC, Inflation – prices indices WPI, CPI and Inflation control. #### MODULE III MONEY AND BANKING 7 Monetary system - Role of Central Bank - Monetary policy - Commercial banks, Development banks; Money market - the role of money. ## MODULE IV INDUSTRY, MARKET AND TRADE 7 Public and private sectors – Contribution to the national economy, Industrial policy. Markets – labor, capital and debt market. Trade: domestic and International trade. ## MODULE V BUDGET, POLICIES AND INDICATORS 8 Economic development – Five year plans, Macro-economic indicators; Central budget: Government revenue-tax and non-tax revenue, government expenditures-plan and non-plan expenditures – Fiscal policy – The impact of the budget on the economy. #### MODULE VI ECONOMIC GROWTH AND THE ROLE OF ENGINEERS 8 India Economy – the role of market in the Indian economy – Development in the post independence era – Growth of the economy, Globalization and liberalization – reforms made and their effects, challenges and opportunities, Engineers – Engineers' contributions to the economic growth. **Total Hours: 45** #### **REFERENCES:** - 1. Vanitha Agarwal, 'Macroeconomics: Theory and Practice', Pearson, (2010). - 2. Dwivedi D.N, 'Macroeconomics: Theory and Policies', 3rd edn; McGraw Hill, (2010). - 3. Samuelson, Paul A., 'Macroeconomics', 19th edn., TMH, (2009). - 4. Gupta G.S, 'Macroeconomics: Theory and Applications', 3rd edn; TMH, (2007). ## **OUTCOMES:** - Students will have an exposure to the basic concepts of microeconomics and macroeconomics. - Students will have gained knowledge in government budget, economic planning and its implementation, money, banking and trade. - They will have learnt about the economic reforms introduced in Indian economy and the role of engineers towards the economic growth and development of the country. #### PHB1182 ## PHYSICS LABORATORY L T P C 0 0 2 1 #### **OBJECTIVES:** - To understand the basic concepts of properties of matter, wave optics. - To understand the properties of ultrasonic and Laser. - To understand the crystal growth technique. - To correlate the experimental results with the theoretical values. ## LIST OF EXPERIMENTS: - 1. Torsional Pendulum- Determination of rigidity modulus of a given wire. - 2. Determination of coefficient of viscosity of a liquid by Poiseuille's method. - 3. Determination of Young's modulus of a beam using non uniform bending method. - 4. Determination of a thickness of a given wire Air wedge. - 5. Spectrometer- determination of wavelength of given source by using grating. - 6. Determination of velocity of ultra sonic waves Ultrasonic Interferometer. - 7. Determination of numerical aperture and acceptance angle of an optical fiber. - 8. Determination of particle size using Laser. - 9. Growth of crystal by slow evaporation technique. - 10. Determination of angle of divergence of Laser beam. - 11. Photo electric effect experiment. #### **OUTCOMES:** On completion of this course, the student will know - Properties of matter, wave optics and quantum physics - Properties and application of Ultrasonic and Laser - Principle and concept of crystal growth technique ## CHEMISTRY LABORATORY 1 T P C 0 0 2 1 #### **OBJECTIVES:** To make students conversant with the - estimation of hardness and TDS in water samples. - Construction of cell and determination of EMF. - Estimation of pH of solutions. - Verification of Beer Lambert's law. ## LIST OF EXPERIMENTS: - 1. Estimation of hardness in domestic water. - 2. Estimation of total dissolved solids (TDS) in domestic water - 3. Construction and determination of emf of a cell. - 4. Determination of single electrode potential. - 5. Estimation of strong acid in the industrial effluents - 6. Estimation of Fe²⁺ present in unknown sample by Potentiometry - 7. Verification of Beer-Lambert's law and estimation of Cu²⁺ present in unknown sample. - 8. Estimation of Na and K present in the agricultural field by flame photometry. - 9. Study of effect of inhibitors in free radical polymerization (Demo) #### **OUTCOMES:** At the end of the course, students will be able to - estimate the degree of hardness and TDS in water samples. - construct and calculate EMF of cell. - apply the concept of Beer lamberts law. # GEB1102 BASIC ENGINEERING PRACTICES LABORATORY L T P C 0 0 2 1 #### **OBJECTIVES:** - To provide a practical exposure to basic engineering practices like carpentry, fitting, plumbing, welding and making of simple electrical and electronic circuits - To have an understanding on the use of various tools, instruments and methods - To enable the students to appreciate the practical difficulties and safety issues #### CIVIL ENGINEERING PRACTICE - 1. Study of plumbing in general household and industrial systems - 2. Making a small window frame with Lap and Mortise & Tenon Joints #### MECHANICAL ENGINEERING PRACTICE - 1. Fabrication of a small Table frame with Butt, Lap and Fillet Joints - 2. Machining of a simple component like a table weight using lathe - 3. Mould preparation for simple component ## **ELECTRICAL ENGINEERING PRACTICE** - 1. Comparison of incandescent, Fluorescent, CFL and LED lamps. - 2. Study of Protection Circuits (small relay, fuse, MCB, HRC,MCCB,ECCB). - 3. Familiarization of households Electrical Gadgets (Iron Box, Wet Grinder). - 4. Understanding of Domestic and Industrial wiring. - 5. Earthing and its significance. - 6. Troubleshooting in Electrical Circuits. - 7. Study of inverter fed UPS/Emergency lamp. ## **ELECTRONIC ENGINEERING PRACTICE** - Identifications symbolic representation of active and passive electronic components - 2. Solderingand tracing of electronic circuits and checking its continuity - 3. Assembling of A.C. to D.C, D.C to A.C. Circuits in bread Board and Mini project # **OUTCOMES:** Students who complete this course - Should be able to appreciate the practical skills needed even in making of simple objects, assemblies and circuits - Should be able to attend minor defects especially in items used in day to day life - Should be aware of the safety aspects involved in using tools and instruments #### **GEB1103** # COMPUTER PROGRAMMING & APPLICATIONS L T P C 2 0 2 3 #### **OBJECTIVES:** - Expose fundamental concepts and techniques in programming - Give coverage on application logic in programming - Focus on solving practical problems based on analyzing, designing, and implementing computer programs ## MODULE I FUNDAMENTALS OF COMPUTERS 5 Evolution – Generations – Classifications – Applications – Computer organization – Hardware in a typical computer Identification - Booting – Booting error messages - Number system - Number system conversions ## MODULE II BASIC PROGRAMMING AND DEBUGGING 5 Software types – Types of Operating systems - Software development steps – Information technology and internet - The programming tool - Structure of a basic program - Hello world program – Debugging it – Character set – Delimiters – Keywords, identifiers – Constants – Variables – Tools and help features – Comments in a program ## MODULE III INPUT AND OUTPUT 5 Data types - Type conversions - Input/Output: Formatted functions - Unformatted functions - Library functions - Debugging the code - Systems software: Compiler - interpreter- linker - loader - Finding the correct answer given a code snippet and justifying it ## MODULE IV PROBLEM SOLVING 5 Problem solving techniques: Algorithm, flowchart – Pseudo-code – Examples of simple problems in algorithms and flowcharts – Sorting and Searching - Characteristics of a good program – Generations of programming language #### MODULE V OPERATORS AND DECISION STATEMENTS 5 Properties of operators – Priority of operators – Arithmetic relational logical and bitwise operators – If –if else- nested if else- goto- switch case – nested switch case – for loops – nested for loops – while loop – do-while loop – break and continue statement ## MODULE VI ARRAYS AND LOOP CONTROL STATEMENTS Arrays – Initialization – Definition – Characteristics – One dimensional array – Two dimensional arrays - Multi dimensional arrays – Predefined streams - Operation with arrays – Sorting and searching – Structures – Operations on structures #### LIST OF EXPERIMENTS: 30 5 - Computer organization Hardware in a typical computer Identification Booting error messages and what it means - 2. Types of Operating systems Windows and Linux - 3. Structure of a basic program Hello world program Debugging it - 4. Data types Type conversions - 5. Input/Output: Formatted functions Unformatted functions Library functions - 6. Properties of operators Priority of operators Arithmetic relational logical and bitwise operators - 7. If if else- nested if else- goto- switch case nested switch case for loops nested for loops while loop do-while loop break and continue statement - 8. Arrays Operation with arrays - 9. Sorting and searching **Total Hours: 60** #### **TEXTBOOKS:** - 1. Ashok N Kamthane, "Computer Programming", 2nd Edition, Pearson Education, 2012. - 2. Paul J. Deitel, Deitel & Associates, "C How to Program", 7th Edition, Pearson, Education, 2012. ## **OUTCOMES:** Students who complete this course will be able to: - Understand Modular design, logic flow, data abstraction - Describe basic programming constructs, functions, and I/O. - Write down programs for sorting and searching algorithms - Write down programmes developing cycle for different applications - The students will be able to debug the programs while solving some practical problems in programming #### SEMESTER II # MAB1282 ADVANCED CALCULUS L T P C 3 1 0 4 #### **OBJECTIVE:** The aim of the course is to train the students in additional areas of Engineering Mathematics, necessary for grooming them into successful engineers. The topics will serve as basic tools for specialized studies in many engineering fields, significantly in fluid mechanics, field theory and communication engineering. ## MODULE
I DOUBLE INTEGRALS 7 Double integration – Cartesian and Polar coordinates – change of order of integration – area as a double integral — change of variables between Cartesian and polar coordinates. ## MODULE II TRIPLE INTEGRALS AND SPECIAL FUNCTIONS 7 Triple integration in Cartesian coordinates - change of variables between cartesian, cylindrical and spherical polar coordinates - Beta and Gamma functions. #### MODULE III VECTOR INTEGRATION 7 Line, surface and volume integrals – Green's, Gauss Divergence and Stoke's theorems (without proof) – verification and evaluation of integrals using them. ## MODULE IV ANALYTIC FUNCTION 8 Analytic function - Necessary and Sufficient condition (Proof not included) – Cauchy-Riemann equations in polar coordinates - properties of analytic function – determination of analytic function – conformal mapping (w = z+a, az and 1/z) and bilinear transformation. ## MODULE V COMPLEX INTEGRATION 8 Statement and application of Cauchy's integral theorem – Cauchy's integral formula – Taylor's series and Laurent's series expansion – singularities - classification – residues - Cauchy's residue theorem – contour integration – Unit circle and semi circular contours (excluding poles on the real axis). #### MODULE VI PARTIAL DIFFERENTIAL EQUATIONS Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions — Solution of standard types of first order partial differential equations — Lagrange's linear equation — Linear partial differential equations of second and higher order with constant coefficients. L - 45; T - 15; Total Hours- 60 8 ## **TEXT BOOKS:** - 1. Veerarajan.T., "Engineering Mathematics "(5th edition) Tata Mc Graw Hill Publishing Co. New Delhi, 2012. - 2. Grewal B.S., "Higher Engineering Mathematics" (42nd edition), Khanna Publishers, New Delhi, 2012. #### **REFERENCES:** - 1. Kreyszig, E., "Advanced Engineering Mathematics", 10th edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore, 2001. - 2. Peter V. O'Neil, "Advanced Engineering Mathematics", 7th edition, Cengage Learning, 2011. - 3. Dennis G. Zill, Warren S. Wright, "Advanced Engineering Mathematics", 4th edition, Jones and Bartlett publishers, Sudbury, 2011. - 4. Alan Jeffrey, "Advanced Engineering Mathematics", Academic Press, USA, 2002. - 5. Ramana, B.V., "Higher Engineering Mathematics" Tata Mc Graw Hill Publishing Co. New Delhi, 2006. - 6. Venkataraman, M.K., "Engineering Mathematics", Volume 2, 2nd edition, National Publishing Co., Chennai, 2003. ## **OUTCOMES:** On completion of the course the students will be able to - solve integrals of higher orders. - apply vector calculus for solving engineering problems. - solve complex differentiation and integration problems related to engineering. - formulate practical problems in terms of partial differential equations, solve them and physically interpret the results. # PHB1283 PHYSICS OF ENGINEERING MATERIALS L T P C (Common to ECE, EEE, AERO, CSE & IT Branches) 3 0 0 3 #### **OBJECTIVE:** To familiarize the physical, chemical, electrical and mechanical properties of different Engineering materials. #### MODULE I CONDUCTING MATERIALS 10 Electron ballistics: charged particle, force on charged particles in an electric field, force on charged particles in Magnetic field - Parallel electric and magnetic field - Perpendicular electric and magnetic field - Classical free electron theory of metals — Derivation for electrical conductivity — Merits and drawbacks of classical theory — Quantum free electron theory of metals and its importance (qualitative) — Energy distribution of electrons in metals — Fermi distribution function — Density of energy states and carrier concentration in metals (derivation) — Fermi energy — Classification of solids into conductors, semiconductors and insulators on the basis of band theory. #### MODULE II SEMICONDUCTING MATERIALS 9 Elemental and compound semiconductors – Drift and diffusion current - Intrinsic semiconductors – Carrier concentration (derivation) – Fermi energy – Variation of Fermi energy level with temperature – Mobility and electrical conductivity – Band gap determination – Extrinsic semiconductors – Carrier concentration in n-type and p-type semiconductor (derivation) – Variation of Fermi level with temperature and impurity concentration – Variation of Electrical conductivity with temperature – Hall effect – Experiment and applications of Hall effect. ## MODULE III DIELECTRIC MATERIALS 7 Dielectric constant – Electric Susceptibility – Types of dielectric polarization – Frequency and temperature dependence of polarization – Internal field and deduction of Clausius-Mosotti's equation(derivation) – Dielectric loss – Types of dielectric breakdown – Uses of dielectric materials (capacitor & transformer). #### MODULE IV MAGNETIC MATERIALS 6 Origin of magnetic moment – Types of magnetic materials and their properties -Ferromagnetism – Domain theory of ferromagnetism, hysteresis, soft and hard magnetic materials – Anti ferromagnetic materials (qualitative) – Ferrites – Applications-Magnetic memory – Tapes & magnetic disk drives. ## MODULE V SUPERCONDUCTING MATERIALS 6 Superconductivity - BCS theory - Meissner effect - Critical magnetic field - Type I and Type II superconductors - High temperature superconductors - Applications of superconductors: SQUID and magnetic levitation. ## MODULE VI OPTICAL AND NEW ENGINEERING MATERIALS 7 Optical properties of semiconductors – Direct and indirect bandgap semiconductors – Color centers, exciton – Luminescence – Fluorescence – Phosphorescence – Liquid crystal display, Solar cell – Electro optic effect-Pockel's effect - Kerr effect – Faraday effect. Metallic glasses – Preparation, properties and applications - Shape Memory Alloys – Preparation, properties and applications, Nano phase materials – Synthesis, properties and applications. **Total Hours: 45** ## **TEXT BOOKS:** - 1. Palanisamy P.K., Physics II, Material Science for ECE, Scitech Publications (India) Pvt Ltd., 2006. - 2. Safa O. Kasap, Principles of Electronic materials and devices, McGraw Hill Publishers, 3rd Edition, 2006. #### REFERENCES: - 1. Arumugam.M, Physics II, Material Science for ECE, Anuradha Publishers, 5th Edition, 2005. - 2. Jacob Millman, Christos C.Halkais, Electronic Devices and Circuits, Tata McGraw-Hill, New Delhi, 1991. - 3. Charles Kittel, Introduction to solid state physics, 7th Edition, John Wiley & sons (ASIA) Pvt. Ltd. - 4. Sze. S.M., Semiconductor Devices Physics and Technology, 2nd edn. John Wiley, 2002. # B.Tech. Computer Science & Engg. - 5. Nandita Das Gupta and Amitava Das Gupta, Semiconductor Devices Modelling and Technology, Prentice Hall of India, 2004. - 6. Donald A. Neamen, "Semiconductor Physics and Devices" 3rd Ed., Tata McGraw Hill, 2002. ## **OUTCOMES:** On completion of this course, the student will be able to - choose the correct semi-conductors for electronic devices and display - use dielectric materials for transformers and capacitors - use ferromagnetic materials for solid state devices - apply the concept of super conductivity for Engineering applications # SSB1182 SOCIOLOGY, ETHICS AND HUMAN VALUES L T P C 3 0 0 3 #### **OBJECTIVES:** - To give an overview of the fundamental of sociology. - To expose how society developed in India, classes and impact. - To introduce sociological aspects relating to industry - To provide some basic concepts on ethics and human rights. - To stress the role of engineer to the society, environment and sustainability. #### MODULE I FUNDAMENTALS OF SOCIOLOGY 7 Sociology - definition, evolution – scope – basic concepts – social process, sociological theories, social institutions, culture and social stratification – family – economic – politics – religion – education, state and civil society – social control. ## MODULE II SOCIOLOGY IN INDIAN CONTEXT 7 Development – Institutions, classes – women and society – impact of social laws, social change in contemporary India – secularism and communalism – social exclusion and inclusion. #### MODULE III INDUSTRIAL SOCIOLOGY 7 Definition and perspectives – industry in India – social groups in industry, behaviour pattern – group dynamics – focus groups – team – enhancing group behaviour. # MODULE IV INDUSTRIAL - SOCIETY INTERFACE 8 Perspectives – social responsibilities – sociological effect on industrialization – urbanization, child labour, psychological impact, Impact of technology, modernization – globalization – challenges – role of engineers. #### MODULE V ETHICS AND HUMAN VALUES 8 Ethics and values – organizational values – personal worth, ethical behavior, professional ethics, whistle blowing, international ethics, corruption. #### MODULE VI ENGINEERS AND SOCIETY Quality of life and society – engineer in economic development, technology development – invention, innovation and diffusion – appropriate technology – engineer's contribution, ecology and environment – sustainability – role of engineers. **Total Hours: 45** 8 #### **REFERENCES:** - 1. Samir Das Gupta and Paulomi Saha, An Introduction to Sociology, Pearson, Delhi, 2012. - 2. Narender Singh, Industrial Sociology, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012. - 3. Vidya Bhushan and D.R. Sachdeva, Fundamental of Sociology, Pearson, Delhi, 2012. - 4. Deshpande, Satish, Contemporary India: A Sociological view, Viking (2002) - 5. Thopar, Romila, Early India, Penguin (2003). - 6. Mike Martin and Roland Schinzinger, Ethics in Engineering, McGraw Hill, New York, 1996. ## **OUTCOMES:** - Students will have an exposure to the fundamentals and basic concepts of Sociology. - Students will gain knowledge in Industrial Sociology. - Students will have gained knowledge about the impact of technology, modernization, globalization and their contribution towards society. ## GEB1211 BASIC ENGINEERING MECHANICS L T P C 3 1 0 4 #### **OBJECTIVES:** - To impart knowledge about the basic laws of statics and dynamics and their applications in
problem solving - To acquaint with scalar and vector approaches for representing forces and moments acting on particles and rigid bodies and their equilibrium - To give an exposure on inertial properties of surfaces and solids - To provide an understanding on the concept of work energy principle, friction, kinematics of motion and their relationship #### MODULE I VECTOR APPROACH TO MECHANICS 7 Introduction - Units and Dimensions - Laws of Mechanics – Lame's theorem, Parallelogram and triangular Law of forces – Vectors – Vectorial representation of forces and moments – Vector Algebra and its Physical relevance in Mechanics - Coplanar Forces – Resolution and Composition of forces-Equilibrium of a particle #### MODULE II EQUILIBRIUM OF PARTICLE 6 Forces in space - Equilibrium of a particle in space - Equivalent systems of forces - Principle of transmissibility - Single equivalent force ## MODULE III EQUILIBRIUM OF RIGID BODY 6 Free body diagram – Types of supports and their reactions – requirements of stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis –Vectorial representation of moments and couples – Scalar components of a moment –Varignon's theorem - Equilibrium of Rigid bodies in two dimensions –Examples #### MODULE IV PROPERTIES OF SURFACES 8 Determination of Areas – First moment of area and the Centroid of sections – Rectangle, circle, triangle from integration – T section, I section, Angle section, Hollow section by using standard formula – second and product moments of plane area – Physical relevance - Rectangle, triangle, circle from integration - T section, I section, Angle section, Hollow section by using standard formula – Parallel axis theorem and perpendicular axis theorem – Polar moment of inertia. #### MODULE V LAWS OF MOTION 10 Review of laws of motion – Newton's law – Work Energy Equation of particles – Impulse and Momentum – Impact of elastic bodies. ## MODULE VI FRICTION 8 Introduction to friction- types of friction- Laws of Coloumb friction- Frictional force – simple contact friction – Rolling resistance –ladder friction **Total Hours: 45** ## **REFERENCES:** - 1. Beer, F.P and Johnston Jr. E.R, "Vector Mechanics for Engineers, Dynamics & Statics", Third SI Metric Edition, Tata McGraw-Hill International Edition, 2001. - 2. Hibbeller, R.C., Engineering Mechanics, Vol. 1 Statics, Vol. 2 Dynamics, Pearson Education Asia Pvt. Ltd., 2000. - 3. Irving H. Shames, Engineering Mechanics Statics and Dynamics, IV Edition Pearson Education Asia Pvt. Ltd., 2003. ## **OUTCOMES:** On completion of this course students: - should be able to resolve forces, moments and solve problems using various principles and laws - should be able to understand the concept of equilibrium, kinetics and kinematics and capable of formulating the governing equations to practical problems and provide solutions for those equations # EEB1281 INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING L T P C 3 0 0 3 #### **OBJECTIVES:** To impart knowledge on - Basic concepts of electrical circuits and their solutions - Performance of Electrical machines, speed control and their use as drives. - Basic knowledge on power system and various methods of power generation through renewable energy sources. - To understand the concepts of quantum theory of solids and semiconductor materials. - To provide a basis for understanding the characteristics, operation and limitations of semiconductor devices. #### MODULE I DC AND AC CIRCUITS 9 Circuit Parameters-Sources- Kirchhoff's laws-Solution of simple circuits. AC quantities – Phasor representation – Power-Real, Reactive and Apparent Power – Solution of Simple circuits. Superposition, Thevenin's, Norton's and Maximum power transfer theorem-Network solution by Mesh current and Node Voltage method. # MODULE II ELECTRICAL MACHINES AND DRIVES 8 DC generator and Motor – Working Principle and Operating Characteristics – Starters for DC motors and speed control – applications. Transformers - Single phase and three phase transformers- Working Principle – EMF equation - equivalent circuit and performance calculations. Three phase and single phase induction motors - Working Principle -Torque-Slip characteristics-Starting and speed control – use of induction motor as industrial drives. #### MODULE III ELECTRIC POWER SYSTEMS 6 Structure of Power system - Transmission and Distribution schemes - Power Quality – Indian Electricity Rules and Regulations. Energy band theory – intrinsic semiconductors- extrinsic semiconductors - Calculation of location of Fermi level and free electron and hole densities in extrinsic semiconductors – N and P type semiconductors- Mobility, drift current and conductivity – Diffusion current – Continuity equation - Hall effect - Calculation of electron and hole densities. ## MODULE V PN JUNCTION AND SPECIAL DIODES 7 Band structure of PN Junction – Current Component in a PN Junction – Derivation of diode equation - switching characteristics of diode- Mechanism of avalanche and Zener breakdown - Zener diode & its applications – Diode as Clipper & Clamper- Varactor diode – Backward diode – Tunneling effect in thin barriers - Tunnel diode – Photo diode - Schottky diodes. #### MODULE VI TRANSISTORS AND AMPLIFIERS 7 Bipolar junction transistor- CB, CE, CC configuration and characteristics-Comparision-Field effect transistor-Configuration and characteristic-SCR, DIAC, TRIAC, UJT-Characteristics and simple applications-MOSFET: PMOS. NMOS- Structure and characteristics **Total Hours: 45** #### REFERENCES: - 1. William H. Hayt Jr, Jack E. Kemmerly, and Steven M. Durbin, 'Engineering Circuit Analysis', Tata McGraw Hill Publishing Co Ltd, New Delhi, 200.2 - 2. Vedam Subrahmanyam, "Electric Drives", McGraw-Hill Education (India) Pvt Limited, 2010. - 3. Edward Hughes, "Electrical and Electronics Technology", Pearson India, 9th Edition, 2007. - 4. D.P.Kothari and I.J.Nagrath, "Basic Electrical Engineering", Tata McGraw Hill Publishing Co Ltd, 2nd Edition, 2002. - 5. I.J. Nagrath and D.P.Kothari, 'Power System Engineering', Tata McGraw Hill Publishing Co Ltd, 2nd Edition, 2007. - 6. Ewald F.Fuchs and Mohammed A.S.Masoum, Elsevier Academic Press, 2008. - 7. Indian Electricity Rules, 1956. - 8. Jacob Millman & Christos C.Halkias, "Electronic Devices and Circuits" Tata McGraw–Hill, 1991. - 9. Floyd, "Electronic Devices: Conventional Current Version, 7/E" Pearson Education India, 2008 - 10. S.Salivahanan, N.Sureshkumar and A.Vallavaraj, Electronic Devices and Circuits, TMH, 1998. ## **OUTCOMES:** Students who complete this course will be able to: - Demonstrate the basics of Electrical circuits and their solution methods. - Understand the working of machines and their drives. - Explain the structure of power system and importance of power quality. - Analyse various methods of Power generation from renewable energy sources. - Demonstrate working of PN junction diodes and special purpose diodes. - Explain the characteristics of Transistors both in ideal and non-ideal cases. #### CSB1211 ANALOG AND DIGITAL COMMUNICATION LTPC 3 0 0 3 #### **OBJECTIVES:** - To study bout the modulation techniques. - To understand about the modulation techniques used for digital data transmission. - To have the knowledge about the digital communication. - To study about the spread spectrum and multiple access techniques. #### MODULE I AMPLITUDE MODULATION 8 Principles of amplitude modulation – AM envelope, frequency spectrum and bandwidth, modulation index and percent modulation, AM power distribution, AM modulator circuits – Low level AM modulator, medium power AM modulator, AM transmitters – Low level transmitters, high level transmitters, receiver parameters, AM reception – AM receivers – TRF. ## MODULE II ANGLE MODULATION 8 Angle modulation – FM and PM waveforms, phase deviation and modulation index, frequency deviation, phase and frequency modulators and demodulators, frequency spectrum of Angle – Modulated waves. Bandwidth requirements for Angle – Modulated waves, commercial Broadcast band FM, Average power of an angle – Modulated wave, frequency and phase modulators, A direct FM transmitters, Indirect transmitters, Angle modulation Vs amplitude modulation, FM receivers: FM demodulators, PLL FM demodulators, FM noise suppression, frequency verses phase modulation. # MODULE III DIGITAL TRANSMISSION 8 Introduction, pulse modulation, PCM – PCM sampling, sampling rate, signal to quantization noise rate, companding – Analog and digital – Percentage error, delta modulation, adaptive delta modulation, differential pulse code modulation, pulse transmission – ISI, eyepattern, Data communication history, standards, data communication circuits, data communication codes, Error control, Hardware, serial and parallel interfaces, data modems, – Asynchronous modem, Synchronous modem, low – Speed modem, medium and high speed modem, modem control. #### MODULE IV DIGITAL COMMUNICATION Introduction, Shannon limit for information capacity, digital amplitude modulation, frequency shift keying, FSK bit rate and baud, FSK transmitter, BW consideration of FSK, FSK receiver, phase shift keying – binary phase shift keying – QPSK, DPSK. #### MODULE V SPREAD SPECTRUM 8 8 Introduction, Pseudo – Noise sequence, DS spread spectrum with coherent binary PSK, processing gain, FH spread spectrum, multiple access techniques – TDMA and FDMA. ## MODULE VI CHANNEL CODING 5 Types of error control – Linear block codes – Error detection and correction capacity – Cyclic codes – Convolution Codes. **Total Hours: 45** #### **TEXT BOOKS:** - 1. H Taub, D L Schilling, G Saha, "Principles of Communication Systems" 3/e, Tata McGraw Hill Publishing Company Limited, 2011. - 2. S. Haykin "An Introduction To Analog And Digital Communications" John Wiley, 2009. #### **REFERENCES:** - 1. B.P.Lathi, "Modern Digital and Analog Communication Systems", 3/e, Oxford University Press, 2009. - 2. Bernard Sklar, Pabitra Kumar Rai, "Digital
Communications Fundamentals and Applications" 2/e Pearson Education 2009. - 3. H P Hsu, "Analog and Digital Communications", Schaum Outline Series, Tata McGraw Hill, 2006. # **OUTCOMES:** Students who complete this course will be able to: - Derive the energy or power spectral density of signals. - Sketch the spectrum of amplitude modulated signals, given the baseband spectrum. - Compute the bandwidth and transmission power by analyzing time and frequency domain spectra of signal required under various modulation schemes #### **ENB1282** #### WRITTEN COMMUNICATION LTPC 0 0 2 1 #### **OBJECTIVES:** - To develop their creative thinking skills and write reviews. - To train them with the nuances of corporate correspondence - To train them in writing official letters, technical reports and proposals. - To expose them to the writing of Statement of Purpose. ## MODULE I WRITTEN COMMUNICATION 4 Introduction - process of writing – ABC of academic and professional writing – Writing an article. ## MODULE II CREATIVE WRITING 5 Writing stories based on visuals - Preparing an outline for a story - Writing critical reviews on an article / a paper #### MODULE III CORPORATE CORRESPONDENCE 3 Tone in formal writing – e-mail writing, memo, fax, agenda and minutes writing. Lab: viewing e-mail etiquette, format and conventions of writing memo. #### MODULE IV OFFICIAL LETTERS 6 Writing Statement of purpose, Letter of Application and Resume – Assessing one's strengths and weaknesses – peer evaluation. Lab: Resume writing – Viewing different types – Functional, Chronological - Writing one's resume using wiki, Letter calling for interview and seeking promotion. ## MODULE V TECHNICAL WRITING I 6 Describing an experiment, writing instructions and recommendations, Feasibility report and progress report, Synopsis – Group assignment – case study. #### MODULE VI TECHNICAL WRITING II 6 Writing a technical proposal – Format – cover page, executive summary, timeline chart, budget estimate, drafting, conclusion,. **Total Hours: 30** ## **REFERENCES:** - Riordan & Pauley. 'Report Writing Today'. 9th Edition. Wadsworth Cengage Learning, USA. 2005. - 2. Gerson, Sharon & Steven M. Gerson, 'Technical Writing: Process and Product' Pearson Education, New Delhi. 2004. - M Ashraf Rizvi 'Effective Technical Communication'. Tata McGraw-Hill 3. Education, 2005. - Sharma, R.C. & Krishna Mohan, "Business Correspondence and Report 4. Writing". Tata MacGraw – Hill Publishing Company Limited, New Delhi. 2002. - Anderson, Durston & Pool. "Thesis and Assignment Writing". 4th Edition. John 5. Wiley & Sons. Australia. 2002. ## **OUTCOME:** On completion of the course, the students will have the ability to write all kinds of formal correspondence like letters, reports and proposals. ## EEB1282 ## ELECTRICAL AND ELECTRONICS ENGINEERING LAB L T P C 0 0 3 1 #### **OBJECTIVES:** - To understand, simulate and verify Thevenin's and Norton's theorem. - To understand and verify the characteristics of various Electrical Machines - To understand the three phase Power Measurement in AC circuits. - To verify practically, the fundamental characteristics of Electron Devices. ## LIST OF EXPERIMENTS: - 1. Verification of Thevenin's theorem and Norton's theorem using MATLAB - Open circuit characteristics and Load Characteristics of Self Excited DC Generator - 3. Load Test on DC Shunt and DC Series Motor - 4. Load Test on Single Phase Transformer - 5. Load Test on Three Phase Induction Motor - 6. Measurement of 3 phase power using 2 wattmeter method - 7. PN Junction Diode characteristics. - 8. Zener Diode characteristics. - 9. Input and Output characteristics of BJT in CE configuration. - 10. Characteristics of JFET. - 11. SCR Characteristics. ## **OUTCOMES:** At the end of the course, the student should be able to: - Construct and simulate any given simple electric circuits and verify theorems using MATLAB - Study and understand the performance of Electrical Machines - Measure the three phase power. - Experimentally understand the characteristics of diodes, BJT's and FET's and SCR # PHB1284 PHYSICS OF ENGINEERING MATERIALS L T P C LABORATORY 0 0 2 1 (Common to ECE, EEE, AERO, CSE & IT Branches) ## **OBJECTIVES:** • To study the characteristics of conducting, semiconducting, dielectric, magnetic and optical materials. ## LIST OF EXPERIMENTS: - 1. Determination of magnetic field along the axis of a circular coil Stewart and Gees experiment. - 2. Determination of electrical conductivity of a given metal by four point probe method. - 3. Determination of Hall coefficient of a given semiconductor material. - 4. Determination of band gap of a semiconductor diode. - 5. Determination of dielectric loss of a dielectric material using LCR bridge method. - 6. Determination of time constant of an RC circuit by charging and discharging of a capacitor. - 7. Determination of magnetic susceptibility of a paramagnetic material using Quincke's method. - 8. Determination of energy loss of a given transformer coil using Hysteresis B-H curve. - 9. Determination of Verdet constant of a material using Faraday Effect. - 10. Determination of Kerr constant using electro optic modulators. ## **OUTCOMES:** At the end of the course, the student will be able to - Know the properties of conducting, semiconducting, dielectric and magnetic materials. - Know the principle and working of Kerr modulator and Faraday rotator. ## SEMESTER III MAB 2181 TRANSFORMS AND APPLICATIONS L T P C (Common to all B.Tech Programmes) 3 1 0 4 ## **OBJECTIVES:** The course aims to - develop the skills of the students in the areas of boundary value problems and transform techniques. - acquire knowledge on different transforms like Laplace Transform, Fourier Transform and Z Transform. ## MODULE I LAPLACE TRANSFORM 8 Laplace transform - Sufficient condition - Transforms of elementary functions - Properties - Transforms of Derivatives and Integrals - Initial and Final Value Theorem - Transform of Periodic functions - Inverse transforms - Convolution Theorem. ## MODULE II FOURIER SERIES 7 Dirichlet's conditions - General Fourier series - Odd and even functions - Half-range sine series - Half-range cosine series - Complex form of Fourier Series - Parseval's identity - Harmonic Analysis. ## **MODULE III BOUNDARY VALUE PROBLEMS** 8 Classification of second order quasi linear partial differential equations - Solutions of one dimensional wave equation - One dimensional heat equation - Steady state solution of two-dimensional heat equation (Insulated edges excluded) - Fourier series solutions in Cartesian coordinates. ## MODULE IV FOURIER TRANSFORM 7 Fourier integral theorem (without proof) - Fourier transform pair - Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. ## MODULE V Z -TRANSFORM AND DIFFERENCE EQUATIONS 7 Z-transform - Properties - Inverse Z-transform - Convolution theorem - Formation of difference equations. ## MODULE VI APPLICATIONS OF TRANSFORMS Applications of Laplace Transform in solving linear ordinary differential equations - Second order with constant coefficients, Simultaneous First order equations - Applications of Z-transform in solving difference equations using Z-transform. L - 45; T - 15; Total Hours - 60 8 ## **TEXT BOOKS:** - 1. Veerarajan.T, "Engineering Mathematics", 5th Edition, Tata Mc Graw Hill Publishing Co. New Delhi, 2012. - 2. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publishers, New Delhi, 2012. ## **REFERENCES:** - 1. Kreyszig .E, "Advanced Engineering Mathematics", 10th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore, 2001. - 2. Peter V. O'Neil, "Advanced Engineering Mathematics", 7th Edition, Cengage Learning, 2011. - 3. Dennis G. Zill, Warren S. Wright, "Advanced Engineering Mathematics", 4th Edition, Jones and Bartlett publishers, Sudbury, 2011. - 4. Alan Jeffrey, "Advanced Engineering Mathematics", 1st Edition, Academic Press, USA, 2002. - 5. Ramana B.V, "Higher Engineering Mathematics",1st Edition, Tata McGraw Hill Publishing Co. New Delhi, 2006. #### **OUTCOMES:** At the end of the course, the students will be able to - solve engineering problems in the area of heat conduction, communication systems, electro-optics and electromagnetic theory using different transforms. - solve boundary value problems encountered in engineering practices. SSB2181 LAW FOR ENGINEERS L T P C 3 0 0 3 ## **OBJECTIVES:** - To familiarize with Indian Constitution and Governance of our country. - To apprise on human rights, local and International and redressal mechanism. - To provide important aspect of corporate laws. - To give an introduction of important industrial and labour laws of our country. - To provide an exposure on laws on contracting and arbitration. - To give an overview on intellectual property related laws. ## MODULE I INDIAN CONSTITUTION 7 Constitution - Meaning and history - Making of constitution - Salient features, preamble, Citizenship, Fundamental rights, Fundamental duties, Equality and social justice, Directive principles, Constitutional amendments. ## MODULE II GOVERNANCE AND POWERS VESTED 7 Union executive, Legislature - Union - State and union territories, Union and state relations, powers vested with parliament and state legislature, emergency provisions - People's Representations Act - Election Commission - Election for parliament and state legislature, Judiciary. ## **MODULE III HUMAN RIGHTS** 7 Human rights - meaning and significance, International law on human rights, Covenant on civil and political rights; Covenant on Economic, social and cultural rights - protocol, UN mechanism and agencies, watch on human rights and enforcement - Role of judiciary and commission, Right to information Act 2005 - Evolution - Concept - Practice. ## MODULE IV CORPORATE AND LABOUR LAWS 7 Corporate laws - Meaning and scope - Laws relating to companies, Companies Act 1956 - Collaboration agreement for Technology
transfer, Corporate liability - Civil and criminal - Industrial employment (standing orders) Act 1946, Industrial Disputes Act, 1947, Workmen's Compensation Act 1923, The Factories Act, 1948 - Industry related other specific laws. ## MODULE V CONTRACTS AND ARBITRATION Types of contract - Standard form of contracts - General principles under Indian Contract Act, 1872 - Protection against exploitation - Judicial approach to contracts, Arbitration and conciliation - Meaning, scope and types, model law, judicial intervention, international commercial arbitration - Arbitration agreement, arbitration tribunal - Powers and jurisdiction, enforcement and revision, Geneva Convention, Awards, Confidentiality. ## MODULE VI LAWS RELATED TO IPR 8 9 IPR - Meaning and scope, International Convention - Berne and Parrys Conventions, International organization - WIPO - TRIPS, Major Indian IPR Acts - Copyright laws, Patent and Design Act, Trademarks Act, Trade Secret Act, Geographical Indicator, Securing of International patents. **Total Hours: 45** #### **REFERENCES:** - 1. Jain M.P, "Indian Constitutional Law", Wadhwa & Co., (2005) - 2. Subhash G. & Kashyap, "Our Constitution: An introduction to India's Constitution and Constitutional Law", 3rd Edition, National Book Trust, India (2001) - 3. Agarwal H.D., "International Law and Human Rights", Central Law Publications, (2008). - 4. Meena Rao, "Fundamental Concepts in Law of Contract", 3rd Edition, Professional offset, (2006). - 5. Ramappa, "Intellectual Property Rights Law in India", Asia Law House (2010) - 6. Avtar Singh, "Company Law", Eastern Book Co., (2007). - 7. Rustamji R.F., "Introduction to the Law of Industrial Disputes", Asia Publishing House. - 8. Acts: Right to Information Act, Industrial Employees (standing order) Act, Factories Act, Workmen Compensate Act. ## **OUTCOMES:** ## Students will be - familiar with Indian Constitution and Governance of our country, local and International redressal mechanism. - familiar with intellectual property related laws. - able to apply corporate laws, important industrial and labour laws of our country. - able to take up managerial, professional, ethical, social and economic responsibilities. ## CSB2101 OBJECT ORIENTED PROGRAMMING LTPC 3 0 0 3 ## **OBJECTIVES:** - To provide knowledge about the benefits of Object Oriented Programming over Procedure oriented programming. - To prepare students to get full use of code reusability using object oriented programming. ## MODULE I PRINCIPLES OF OBJECT ORIENTED PROGRAMMING 7 Object oriented programming paradigm - Basic concepts of object oriented programming - Benefits of OOP - Object-oriented languages - Applications of OOP - Structure of a C++ program- Operator and control structures- Functions. ## MODULE I INTRODUCTION TO JAVA 7 Java: an Introduction, Life cycle of a Java program, Java virtual machine, Programming in Java - Declaring Variables - Packages and Interfaces - Exception Handling. Java I/O streaming - Filter and pipe streams - Byte Code interpretation - Threading -Swing. ## MODULE III NETWORK PROGRAMMING IN JAVA 8 8 Sockets - Secure sockets - Custom sockets - UDP datagrams - Multicast sockets - URL classes - Reading Data from the server - Writing data - Configuring the connection- Reading the header- Java Messaging services. ## MODULE IV APPLICATIONS IN DISTRIBUTED ENVIRONMENT 8 Remote method Invocation - Activation models - RMI custom sockets - Object Serialization - RMI - IIOP implementation - CORBA - IDL technology - Naming Services - CORBA programming Models - JAR file creation. ## MODULE V MULTI-TIER APPLICATION DEVELOPMENT Server side programming - Servlets - Java Server Pages - Applet to Applet communication - applet to Servlet communication - JDBC - Applications on databases. ## MODULE VI ENTERPRISE APPLICATIONS Server Side Component Architecture - Introduction to J2EE - Session Beans-Entity Beans - Persistent Entity Beans. **Total Hours: 45** 7 ## **TEXT BOOKS:** - 1. Matt Weisfeld," Object-Oriented Thought Process", 4th Edition, Pearson Education, 2013. - 2. Hortsmann & Cornell, "Core Java Advance Features VOL II", 9th Edition, Pearson Education, 2013. - 3. Andrew Lee Rubinger, Bill Burke "Enterprise JavaBeans 3.1", 6th Edition, O'Reilly Publishers, 2010. ## **REFERENCE:** 1. Patrick Naughton, "Complete Reference: JAVA 2", 8th Edition, Tata McGraw-Hill, 2011. ## **OUTCOMES:** - write simple example programs using concepts of the object oriented programming. - demonstrate the OOP concepts applied in networking, web development and database applications. CSB2102 DATA STRUCTURES LTPC 3 0 0 3 ## **OBJECTIVES:** - To understand the basic concepts of data structures. - To study the various abstract data types and their applications. - To design and implement different types of searching and sorting algorithms. - To analyze graphical representation and apply algorithms of path finding. ## MODULE I INTRODUCTION TO DATA STRUCTURES 7 Data and Information - Data Structure Types - Concept of Data Types - Abstract Data Types - Pointers - Structures - Unions - Arrays - Multidimensional Arrays. ## MODULE II LISTS, STACKS AND QUEUES 7 List ADT - Stack ADT - Queue ADT - Array Implementation of Stack - Array Implementation of Queue - Singly Linked List - Double Linked List - Stack and Queue using Linked List - Circular Queue. ## **MODULE III TREES** 8 Basic Terms - Binary Trees - Complete Binary Tree - Search Tree ADT - Binary Search Tree - AVL Trees - Expression Trees - Tree Traversals - B Tree - Threaded Binary Tree. ## MODULE IV SEARCHING AND HASHING 8 Introduction to Search - Linear Search - Binary Search - Hashing fundamentals - Hash Function - Separate Chaining - Open Addressing - Linear Probing - Priority Queue - Heaps - Binary Heaps. ## MODULE V SORTING 7 Preliminaries - Insertion Sort - Selection Sort - Shellsort - Bubble Sort - Heapsort - Mergesort - Quicksort - External sorting - Radix Sort. ## **MODULE VI GRAPHS** 8 Graph fundamentals - Terminologies of Graphs - Graph Representation - Graph Traversals - Topological Sort - Shortest Path Algorithm - Dijkstra's Algorithm - Spanning Trees - Prim's Algorithm - Kruskal's Algorithm - Depth First Search - Breadth First Search - Undirected Graphs - Biconnectivity. **Total Hours: 45** ## **TEXT BOOKS:** - 1. Ashok N. Kamthane, "Introduction to Data Structures in C", 2nd Edition, Wiley Publications, 2008. - 2. Narasimha Karumanchi, "Data Structures and Algorithms Made Easy: Data Structure and Algorithmic Puzzles", 2nd Edition, Create Space Independent Publishing Platform, 2011. ## REFERENCE: 1. Mark A. Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education Asia, 2002. ## **OUTCOMES:** - analyze a given problem and recommend suitable data structure. - apply the various searching and sorting algorithms. - represent data in trees structures and graph structure and write suitable algorithms to manipulate them. **CSB2103** ## **DIGITAL LOGIC DESIGN** LTPC 3 1 0 4 ## **OBJECTIVES:** - To understand Boolean algebra, Boolean functions and realization of functions with basic gates. - To design combinational and sequential circuits. - To design circuits with MSI devices. - To learn the use of HDL for designing larger systems. ## MODULE I BOOLEAN ALGEBRA AND LOGIC GATES 7 Review of Binary Number Systems - Binary Arithmetic - Binary Codes - Boolean Algebra and Theorems - Boolean Functions - Canonical and standard forms. ## MODULE II GATE-LEVEL MINIMIZATION 8 Logic operations-Digital Logic Gates-The K-Map method-Two variable-Three variable-Four Variable -Product of sums simplification - Don't care conditions-NAND and NOR implementation - Other two-level implementations - Exclusive-OR function-Introduction to HDL. ## MODULE III COMBINATIONAL LOGIC 8 Combinational circuits - analysis and design procedures -Adder, Subtractor, Encoder/decoder - Three state devices, Priority Encoder, Mux/Demux, Code converters, Comparators-HDL models of combinational circuits. ## MODULE IV SYNCHRONOUS SEQUENTIAL LOGIC 8 Introduction-Sequential Circuits - Latches and Flip Flops - Analysis of clocked sequential circuits- Synthesizable HDL models of sequential circuits - State Reduction and State Assignment - Design procedure. ## MODULE V REGISTERS, COUNTERS, MEMORIES 6 Registers-Shift Registers -Ripple Counters - Synchronous Counters-Other Counters-HDL for Registers and Counters-Memory and Programmable Logic. ## MODULE VI DESIGN AT THE REGISTER TRANSFER LEVEL 8 Introduction-Register Transfer Level Notation-Register transfer level in HDL-ASMs-Sequential Binary multiplier-Control Logic-HDL description of Binary Multiplier-Design with Multiplexers. L - 45; T - 15; Total Hours - 60 ## **TEXT BOOK:** 1. M. Morris Mano and Michael D.Ciletti, "Digital Design with an introduction to the Verilog HDL", 5th Edition, Pearson Education, 2012. ## **REFERENCES:** - 1. Charles H.Roth Jr, "Fundamentals of Logic Design", 5th Edition, Jaico Publishing House, Mumbai, 2003. - 2. Donald D. Givone, "Digital Principles and Design", 13th reprint, Tata McGraw Hill, 2003. ## **OUTCOMES:** - explain the operation of the sequential and combinational logic systems. - learn the basic techniques and methodologies for designing and analyzing digital systems and apply these techniques to build specific circuits for various applications. - describe the Hardware Design language and show how it can be used to design digital circuits. #### CSB2104 ## **COMPUTER ARCHITECTURE** L T PC 3 0 0 3 ## **OBJECTIVES:** - To have a thorough understanding of the basic structure and operation of a digital computer. - To discuss in detail the operation of the arithmetic unit including the algorithms & implementation of fixed-point and floating-point addition, subtraction multiplication & division. - To study in detail the concept of pipelining. ## MODULE I BASIC STRUCTURE OF COMPUTERS 7 Functional units - Basic operational concepts - Bus structures - Software performance - Memory locations
and addresses - Memory operations - Instruction and instruction sequencing - Addressing modes - Assembly language - Basic I/O operations - Stacks and queues. ## MODULE II ARITHMETIC UNIT 9 Addition and subtraction of signed numbers - Design of fast adders - Multiplication of positive numbers - Signed operand multiplication and fast multiplication - Integer division - Floating point numbers and operations. ## MODULE III BASIC PROCESSING UNIT 7 Fundamental concepts - Execution of a complete instruction - Multiple bus organization - Hardwired control - Micro programmed control. ## MODULE IV PIPELINING 8 Pipelining - Basic concepts - Data hazards - Instruction hazards - Influence on Instruction sets - Data path and control consideration - Superscalar operation. ## MODULE V MEMORY SYSTEM 7 Basic concepts - Semiconductor RAMs - ROMs - Speed - size and cost - Cache memories - Performance consideration - Virtual memory- Memory Management requirements - Secondary storage. ## MODULE VI I/O ORGANIZATION 7 Accessing I/O devices - Interrupts - Direct Memory Access - Buses - Interface circuits - Standard I/O Interfaces (PCI, SCSI, USB). **Total Hours: 45** ## **TEXT BOOK:** 1. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, "Computer organization", 5th Edition, McGraw Hill, 2002. ## **REFERENCES:** - 1. William Stallings, "Computer Organization and Architecture Designing for Performance", 9th Edition, Pearson Education, 2012. - 2. John P.Hayes, "Computer Architecture and Organization", 3rd Edition, McGraw Hill, 1998. ## **OUTCOMES:** - trace the basic arithmetic operations on binary number system. - design digital circuits for the basic arithmetic operations and trace its operation. - explain the basic structure of a digital computer and its working principles. - describe the organization of the Control unit, Arithmetic and Logical unit, Memory Unit and I/O unit and show its operation. - correlate basic functional design of digital circuits with the overall design of computer components. **ENB2181** #### ORAL COMMUNICATION LTPC 0 0 2 1 ## **OBJECTIVES:** - To help the students acquire efficiency in Spoken English with due importance to Stress, Accent and Pronunciation. - To hone the listening skills and understand native accent. - To enable them to make presentations effectively. - To develop their ability to persuade and convince people to accept a point of view. - To prepare them for Placement Interviews, Group discussions etc. MODULE I 8 - (i) Oral Communication Implications in real life and work place situations. - (ii) One-minute Presentations (JAM) on concrete and abstract topics that test their creative thinking. - (iii) Prepared presentations and extempore presentations. - (iv) Group project presentation on any social issue. The group will have to research on the history of the problem, its cause, impact and outcome hoped for and then make a presentation. - (v) Recording presentations and feedback Peer and faculty evaluation. MODULE II Listening to ESL Podcast - Viewing Multimedia - Listening to BBC News - Received Pronunciation (RP)/ VOA/ NDTV - exposure to paralinguistic features. MODULE III 4 Developing persuasive skills - Selling a product - Marketing skills - The topics will be on advertising, convincing someone on social issues such as preservation of water, fuel, protection of environment, gender discrimination. MODULE IV 4 Debates on pros and cons on topics of relevance like Nuclear Energy, Appropriate Technology, Internet, Social Media. This will be followed by Peer and Faculty feedback. MODULE V 6 Brainstorming - Think, pair and share activity - Discussion etiquette - Assigning different roles in a GD (Note-taker, Manager, Leader and Reporter) Peer and faculty feedback. MODULE VI 6 Interview Skills - Assessing one's strengths and weaknesses, SWOC Analysis, Mock interview - Verbal and Non-verbal Communication - Types of Job Interview - Telephone Interview, Stress Interview. **Total Hours: 30** ## **REFERENCES:** - 1. Hancock, Mark. "English Pronunciation in Use", Cambridge University Press, UK. 2005. - 2. Anderson, Kenneth & et.al. "Study Speaking: A Course in Spoken English for Academic Purposes", 2nd Edition, Cambridge University Press, UK. 2004. - 3. Hurlock, B. Elizabeth, "Personality Development", Tata McGraw Hill, New York, 2004. ## **OUTCOME:** On completion of the course, the students will have the ability to speak confidently and effectively in Presentations and Group Discussions. ## CSB2105 OBJECT ORIENTED PROGRAMMING LAB L T P C 0 0 3 1 ## **OBJECTIVES:** - To implement the basic concepts of object oriented programming using java concepts. - To understand fundamentals of object-oriented programming in classes, invoking methods and functions. - Learn to create packages, interfaces and threads using java and oops concepts. - To design and develop programs with Graphical User Interfaces capabilities. ## LIST OF EXPERIMENTS: - 1. Simple java program with Control statements. - 2. Getting input from user console. - 3. Classes, Object and Constructors. - 4. Method overloading. - 5. Inheritance. - 6. Final variable, method and class. - 7. Creating packages. - 8. User-defined interfaces. - 9. Pre-defined interfaces. - 10. Simple and Multiple threads. - 11. Exception handling in java. - 12. Graphics class. - 13. File handling. - 14. Web Page creation using Applet. **Total Hours: 45** ## **OUTCOMES:** - differentiate the object-oriented approach from procedural approach in programming. - design and analyze a computer program to solve real world problems based on the four basic object-oriented principles. - write simple GUI interfaces for a computer program to interact with users. ## **CSB2106** ## DATA STRUCTURES LAB LTPC 0 0 3 1 #### **OBJECTIVES:** - To understand basic ADTs such as arrays and linked lists. - To design and implement operations on stacks, queues, trees and graphs. - To design and implement algorithms for searching and sorting. ## **LIST OF EXPERIMENTS:** - 1. Study of List ADT: Simple exercises, implementation of Stacks, Queues, Circular Queues. - 2. Study of Singly Linked List: Operations on Singly Linked List, implementation of Stacks, Queues. - 3. Study of Doubly Linked List: Operations on Doubly Linked List. - 4. Applications of Linked Lists such as Polynomial addition. - 5. Applications of Stacks and Queues such as infix to postfix expression conversion and evaluation. - 6. Binary tree implementation Applications such as expression tree traversal (inorder, preorder & postorder). - 7. Binary search tree insertion traversal and deletion operations. - 8. Implementation of search algorithms linear search and Binary Search. - 9. Implementation of sorting algorithms (selection sort, bubble sort, quick sort, Heap sort). - 10. Representation of graph and traversal algorithm. **Total Hours: 45** ## **OUTCOMES:** - understand and design appropriate data structures to solve a given problem. - design and implement operations on arrays, linked lists, stacks and queues. - apply data structure to solve real time problem such as expression evaluation, tree traversal, searching, sorting, and graph traversal. CSB2107 ## **DIGITAL LAB** LTPC 0 0 3 1 ## **OBJECTIVES:** - To become familiar with different types of digital logic gates and truth table. - To become familiar with design and implementation of circuit diagrams. - To implement and test the combinational, sequential, synchronous and asynchronous circuits using the concerned IC chips. ## **LIST OF EXPERIMENTS:** - 1. Verify the truth table of AND, OR, NOT, EX-OR, gate. - 2. Verification of NAND, OR, EX-OR, NOR using 7400 IC. - 3. Design a hardware circuit to perform the operation of half &full adder. - 4. Design a hardware circuit to perform the operation of full subtractor. - 5. Verify the truth table of RS, D, T, JK Flip Flop. - 6. Study asynchronous counter in up & down mode. - 7. To study multiplexer and demultiplexer. - 8. To study decade counter. - 9. To design D/A, A/D converter. **Total Hours: 45** ## **OUTCOMES:** - verify the operation of the logic gates. - design simple combinational/sequential circuits. ## **SEMESTER IV** ## MAB2285 DISCRETE MATHEMATICS LTPC ## 3 1 0 4 ## **OBJECTIVES:** The aim of this course is to - expose students to techniques of combinatorics and group theory. - familiarize students with graph theory. ## MODULE I PROPOSITIONAL CALCULUS 8 Propositions - Logical connectives - Compound propositions - Conditional and biconditional propositions - Truth tables - Tautologies and contradictions - Contrapositive - Logical equivalences and implications - DeMorgan's Laws - Normal forms - Principal conjunctive and disjunctive normal forms - Rules of inference - Arguments - Validity of arguments. ## MODULE II PREDICATE CALCULUS 8 Predicates - Statement function - Variables - Free and bound variables - Quantifiers - Universe of discourse - Logical equivalences and implications for quantified statements - Theory of inference - The rules of universal specification and generalization - Validity of arguments. ## **MODULE III GRAPHS** 7 Graphs and graph models - Graph terminology and special types of graphs - Presenting graphs and graph isomorphism - Connectivity - Euler and Hamilton paths. ## **MODULE IV GROUPS** 7 Algebraic systems - Semi groups and monoids - Groups - Subgroups and homomorphisms - Cosets and Lagrange's theorem. ## MODULE V RINGS AND FIELDS 7 Rings - Some special classes of rings - Subrings - Field and subfields - Ideals - Quotient Rings - Homomorphism. ## MODULE VI LATTICES AND BOOLEAN ALGEBRA Partial ordering - Posets - Lattices as Posets - Properties of lattices-Lattices as algebraic systems - Sub-lattices - Direct product and homomorphism - Special lattices - Boolean algebra. **Total Hours: 60** 8 ## **TEXT BOOKS:** - Trembly J.P and Manohar R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw-Hill Pub. Co. Ltd, New Delhi, 2003. - 2. Kenneth H.Rosen, "Discrete Mathematics
and its Applications", 5th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 2003. ## **REFERENCES:** - 1. Ralph. P. Grimaldi, "Discrete and Combinatorial Mathematics: An Applied Introduction", 4th Edition, Pearson Education Asia, Delhi, 2002. - 2. Richard Johnsonbaugh, "Discrete Mathematics", 5th Edition, Pearson Education Asia, New Delhi, 2002. - 3. C.L.Liu, "Elements of Discrete Mathematics" Tata McGraw Hill Pub. Co. Ltd., New Delhi, 2003. ## **OUTCOMES:** At the end of the course, students will be able to - test the logic of a program and identify patterns on many levels. - solve problems in engineering using graph and group theory. ## CSB2211 DATABASE MANAGEMENT SYSTEMS LTPC 3 0 0 3 ## **OBJECTIVES:** - To learn the fundamentals of data models and to conceptualize and depict a database system using ER diagram. - To make a study of SQL and relational database design. - To understand the internal storage structures using different file and indexing techniques which will help in physical DB design. - To know the fundamental concepts of transaction processing- concurrency control techniques and recovery procedure. ## MODULE I INTRODUCTION 9 Introduction - An example - Characteristics of Database approach - Actors on the screen; Workers behind the scene - Advantages of using DBMS approach - A brief history of database applications , when not to use a DBMS - Data models, schemas and instances - Three-schema architecture and data independence - Database languages and interfaces - The database system environment - Centralized and client-server architectures - Classification of Database Management systems. ## MODULE II RELATIONAL MODEL AND RELATIONAL ALGEBRA 9 Relational Model Concepts; Relational Model Constraints and Relational Database Schemas - Update Operations, Transactions and dealing with constraint violations - SQL Data Definition and Data Types - Specifying basic constraints in SQL - Basic Retrieval queries in SQL - Insert, Delete and Update statements in SQL - Additional features of SQL - More Complex SQL Retrieval Queries: Specifying constraints as Assertion and Trigger - Views (Virtual Tables) in SQL - Schema change statements in SQL. Unary Relational Operations: SELECT and PROJECT - Relational Algebra Operations from Set Theory; Binary Relational Operations: JOIN and DIVISION - Additional Relational Operations - Examples of Queries in Relational Algebra - The Tuple Relational Calculus - The Domain Relational Calculus. ## MODULE III ENTITY-RELATIONSHIP MODEL 9 Using High-Level Conceptual Data Models for Database Design - An Example Database Application - Entity Types, Entity Sets, Attributes and Keys - Relationship types, Relationship Sets, Roles and Structural Constraints - Weak Entity Types - Refining the ER Design -ER Diagrams, Naming Conventions and Design Issues - Relationship types of degree higher than two. ## MODULE IV DATABASE DESIGN 6 Informal Design Guidelines for Relation Schemas - Functional Dependencies -Normal Forms Based on Primary Keys - General Definitions of Second and Third Normal Forms - Boyce-Codd Normal Form. ## MODULE V RELATIONAL DATABASE 6 Properties of Relational Decompositions - Algorithms for Relational Database Schema Design - Multi-valued Dependencies and Fourth Normal Form - Join Dependencies and Fifth Normal Form - Inclusion Dependencies - Other Dependencies and Normal Forms. ## MODULE VI TRANSACTION MANAGEMENT 6 The ACID Properties - Transactions and Schedules - Concurrent Execution of Transactions -Lock - Based Concurrency Control - Performance of locking - Transaction support in SQL - Introduction to crash recovery- 2PL, Serializability and Recoverability- Lock Management - Introduction to ARIES - The log - Other recovery-related structures- The write-ahead log protocol-Check pointing- Recovering from a System Crash- Media Recovery-Other approaches and interaction with concurrency control. **Total Hours: 45** ## **TEXT BOOKS:** - Elmasri and Navathe, "Fundamentals of Database Systems", 6th Edition, Addison-Wesley, 2011 - 2. Raghu Ramakrishnan and Johannes Gehrke,"Database Management Systems", 3rd Edition, McGraw-Hill, 2003. ## **REFERENCES:** 1. Silberschatz, Korth and Sudharshan, "Data Base System Concepts", 5th Edition, Mc-GrawHill, 2006. 2. C.J. Date, A. Kannan, S. Swamynathan, "An Introduction to Database Systems", 8th Edition, Pearson Education, 2006. ## **OUTCOMES:** - describe fundamental elements of a relational database management system. - list and describe the key characteristics of a relational database. - define the software components of a DBMS. - evaluate database designs for application problems and improve the design by normalization. CSB2212 OPERATING SYSTEM L T P C 3 0 0 3 ## **OBJECTIVES:** - To learn the concepts and creation computer processes and threads. - To understand memory management and virtual memory concepts. - To understand process concurrency and synchronization. - To learn the scheduling policies of modern operating systems. ## MODULE I OVERVIEW OF OPERATING SYSTEMS 6 Operating Systems Objectives and Functions - Evolution of the Operating systems - Operating System Structures. ## MODULE II PROCESS MANAGEMENT & SCHEDULING 6 Process Life cycle - Process control - Threads - Multi Threads - Scheduling criteria - Types of scheduling - Scheduling Algorithms. ## MODULE III PROCESS SYNCHRONIZATION 6 Concurrent process - Principles of Concurrency - IPC - Semaphores - Deadlock - Deadlock Prevention, Avoidance, Detection and recovery. ## MODULE IV MEMORY MANAGEMENT 7 Introduction - Partitions - Paging - Segmentation - Segmentation and paging - Need for virtual memory management - Demand Paging - Page fault and page replacement policies. ## MODULE V I/O MANAGEMENT AND DISK SCHEDULING 10 Organization of I/O functions - Evolution of I/O Functions - Logical Structure of I/O functions - I/O Buffering and Blocking - Disk I/O - Disk Scheduling algorithms - File Management: Principles - File management Techniques - File directories - File System Architecture - File allocation. ## MODULE VI LINUX OPERATING SYSTEM AND ARCHITECTURE: 10 Introduction to LINUX System, Kernel-Architecture System Concepts-Data Structures, System Call Interface, Processes and Signal, POSIX thread concepts, IPC Mechanism (Pipes, FIFOs, Semaphore, Shared Memory, Message Queues and Sockets) - Memory Management, Interrupt Handling, Timers **Total Hours: 45** ## **TEXT BOOK:** Abraham Silberschatz, Peter B galvin, Greg Gagne, "Operating System Concepts", 7th Edition, John Wiley & Sons Inc, 2008. ## **REFERENCES:** - 1. Mauerer, Wolfgang, "Professional Linux® Kernel Architecture", John Wiley & Sons, Wrox, 2008. - 2. Deitel H M, "Operating Systems", 3rd Edition, Pearson education India, New Delhi, 2007. - 3. Jim Mauro and Richard McDougall, "Solaris Internals: Solaris 10 and Open Solaris Kernel Architecture", 2nd Edition, Sun Microsystems Press/Prentice Hall, 2007. - 4. Dhamdhere D M, "Operating Systems", 1st reprint, Tata McGraw Hill, New Delhi, 2006. - 5. Mark Mitchell, Jeffery Oldham, "Advanced Linux Programming ", 1st Edition, Sams Publication, June 21, 2001. ## **OUTCOMES:** - explain the objective and functions of modern operating systems. - analyse the tradeoffs inherent in operating system design. - describe how computing resources are used by application software and managed by system software. - contrast kernel and user mode in an operating system. - summarize techniques for achieving synchronization in an operation system. - compare and contrast the common algorithms used for both preemptive and nonpreemptive scheduling of tasks in operating systems, such a priority, performance comparison, and fair-share schemes. - explain memory hierarchy and cost-performance tradeoffs. - summarize the full range of considerations in the design of file systems. # CSB2213 MICRO PROCESSORS AND MICRO CONTROLLERS L T P C 3 0 0 3 #### **OBJECTIVES:** - To expose students to hardware details of 8085 microprocessor with the related signals and their implications. - To provide indepth coverage on programming and interfacing of 8085 systems. - To provide difference between the architecture of 8085 and 8086. - To describe 8051 architecture and its programming. - To give a basic idea on microcontroller. ## MODULE I 8086 ARCHITECTURE 9 Introduction to 8085 microprocessor- 8086 architecture-Functional diagram - Register organization, Memory segmentation - Programming model- Memory addresses- Physical memory organization- Signal description of 8086-Common function signals- Interrupts of 8086. ## MODULE II INSTRUCTION SET AND ASSEMBLY LANGUAGE 8 Instruction formats-Addressing modes-Instruction set-Assembler directives-Macros-Simple programs involving logical-Branch and call instructions-sorting-Evaluating arithmetic expressions-String manipulations. ## MODULE III I/O INTERFACE 8 8255 PPI various mode of operation and interfacing to 8086-Interfacing keyboard-Display-Stepper motor interfacing-D/A and A/D converter. Memory interfacing to 8086-Vector interrupt table-Interrupt service routine. ## MODULE IV COMMUNICATION INTERFACE 6 Introduction to DOS and BIOS interrupts grated Services Architecture -Serial communication standards-Serial data transfer schemes-8251 USART Architecture and interface. ## MODULE V INTRODUCTION TO MICROCONTROLLER 6 Overview of 8051 micro controller-Architecture-I/O ports-memory organization-Addressing modes and instruction set of 8051-Simple program- Programming 8051 timers and counters. ## MODULE VI THE AVR RISC MICROCONTROLLER ARCHITECTURE 8 Introduction-AVR Family architecture-Register file-The ALU-Memory access and instruction execution-I/O Memory-EEPROM-I/O Ports-Timers-UART-Interrupt structure. **Total Hours: 45** ## **TEXT BOOKS:** - 1. D.V.Hall, "Microprocessor and Interfacing", 2nd Edition, Tata Mc-GrawHill, 2006. - 2. Kenneth.J.Ayala," The 8051 micro controller", 3rd Edition, Cengage learning, 2010. ## **REFERENCES:** - 1. K.Ray and K.M.Bhurchandani, "Advanced
Microprocessors and peripherals", 2nd Edition, Tata Mc-GrawHill, 2006. - 2. Ajay.V.Deshmukh, "Micro controllers and application", Tata Mc-GrawHill, 6th reprint, 2007. ## **OUTCOMES:** - explain the architecture and Instruction set of 8085 and 8086. - develop assembly language programs in 8085 and 8086. - understand multiprocessor configurations. - explain different peripheral devices and interfacing to 8085/8086. ## CSB2214 PRINCIPLES OF PROGRAMMING LANGUAGES LTPC 3 0 0 3 ## **OBJECTIVES:** - To understand the principles and components of programming language design, such as control structures, names, types, exceptions, etc. - To become familiar with the various paradigms of programming languages, for instance functional languages. - To use several programming languages. - To learn how to specify syntax and semantics for a language. ## MODULE I INTRODUCTION 6 Concepts of programming languages-Programming domains-Language Evaluation Criteria- Influences on Language design- Language categories-Programming Paradigms - Imperative- Object Oriented- functional Programming - Logic Programming. ## MODULE II SYNTAX AND SEMANTICS 8 9 Programming Language Implementation - Compilation and Virtual Machines, programming environment-Formal methods of describing syntax - BNF, EBNF for common programming languages features-Parse trees-Ambiguous grammars-Attribute grammars-Denotational semantics and axiomatic semantics. ## MODULE III DATA TYPES, EXPRESSIONS AND STATEMENTS Primitive, character, user defined, array, associative, record, union, pointer and reference types - Names - Variable-concept of binding- Type checking-Type compatibility- Named constants, Variable initialization- Arithmetic, relational and Boolean expressions-Short circuit evaluation Mixed mode assignment-Assignment Statements-Control Structures - Statement Level, Compound Statements-Selection-Iteration-Unconditional Statements- Guarded command. ## MODULE IV SUBPROGRAMS AND BLOCKS 8 Fundamentals of sub-programs-Scope and lifetime of variable - Static and Dynamic scope- Design issues of subprograms and operations-Local referencing environments-Parameter passing methods-Overloaded subprograms-Generic sub-programs-Design issues for functions- user defined overloaded operators- Co routines. ## MODULE V ABSTRACT DATA TYPES 7 Abstractions and encapsulation- Design issues-C++ parameterized ADT-Object oriented programming in small talk, C++, Java, C#, Ada 95-Concurrency- Subprogram level concurrency-Semaphores-Monitors-Massage passing- Java threads- C# threads. ## MODULE VI FUNCTIONAL PROGRAMMING LANGUAGES 7 Introduction-Fundamentals of FPL, LISP, ML, Haskell-Application of Functional Programming Languages and comparison of functional and imperative Languages-Exceptions-Exception Propagation- Exception handler in Ada, C++ and Java. **Total Hours: 45** ## REFERENCES: - 1. Robert .W. Sebesta,"Concepts of Programming Languages", 10th Edition, Addison-Wesley, 2012. - 2. Kenneth C. Louden & Kenneth A. Lambert,"Programming Languages principles and practice", 3rd Edition, Thomson, 2012. - 3. Terrance W.Pratt, Marvin V.Zelkowitz, T.V.Gopal,"Programming Languages Design and Implementation", 1st Edition, Pearson Education, 2008. ## **OUTCOMES:** - distinguish programming language features based on their static and dynamic semantics. - describe differences and similarities between two major programming paradigms (objected oriented and functional). - solve problems using a range of programming paradigms and assess the effectiveness of each paradigm for a particular problem. LSB2181 ## **BIOLOGY FOR ENGINEERS** LTPC 3 0 0 3 ## **OBJECTIVES:** The aim of the course is to introduce basic biological concepts to the engineering students to promote cross-breeding of ideas. In particular, - To provide an overview of cell structure and function. - To give basic idea on biochemistry related to biological aspects. - To introduce genes, their structure, inheritance and about living organisms. - To give an understanding on metabolism, respiration, etc. - To inform students of engineering about the interface of biology and engineering. #### MODULE I BASICS OF CELL STRUCTURE AND FUNCTION Cells as unit of life - Basic chemistry of cell - Physical and chemical principles involved in maintenance of life processes, cell structure and functions - Prokaryotic and Eukaryotic cells, cell wall, plasma membrane, endoplasmic reticulum, nucleus, chromosomes- Cell division - Mitosis, meiosis - Molecules controlling cell cycle. ## MODULE II BIOCHEMISTRY 8 7 Biomolecules - Introduction - Basic principles of organic chemistry, types of functional groups, chemical nature, pH and biological buffers - Carbohydratesmono, di, oligo and polysaccharides, lipids- Phospholipids, glycolipids, sphinglipids, cholesterol, steroids, prostaglandms - Aminoacids, peptides, proteins - Structures- Primary, secondary, tertiary and quaternary, glycoproteins, lipoproteins - Nucleic acids - Purines, pyrimidines, nucleoside, nucleotide, RNA, DNA. ## **MODULE III GENETICS** 7 Genes - Structure and functions - Behavior, dominance and epigenetics, evolution - Inheritance - Reproduction and gene distribution - Genome of living organisms - Plants - bacteria and viruses - Animals - Humans, genetic engineering. #### MODULE IV MICROBIOLOGY 8 Microbiology - Basis of microbial existence - Microbial diversity - Classification and nomenclature of micro-organisms- Impact of microorganisms on industry, agriculture and health, industrial microbiology - Primary and secondary screening of micro-organisms, fermentation processes, bioreactors, microbial ecology - Microbial bio-remediation - Epidemiology and public health. ## MODULE V METABOLISM 7 Metabolic processes - Bio-membranes, diffusion, absorption, osmo-regulation, photosynthesis, respiration, dialysis, nutrition, digestion and excretion. ## MODULE VI BIOLOGY AND ENGINEERS 8 Application of biology in engineering- Living things as the solutions (bionics) - Living things as models (biometrics) - Bio-technology - Biomedical engineering - Effect of human action on living things - Right balance - Bioinformatics - Bionanotechnology - Sensors, biosensors, biochips-Ethics in biology. **Total Hours: 45** ## **REFERENCES:** - 1. Johnson, Arthur T., "Biology for Engineers", CRC Press, FL, 2011. - 2. Campbell and Recee, "Biology, Pearson, Benjamin", 8th Edition, Cummins Pub, 2008. - 3. Scott Freeman," Biological Sciences", Prentice Hall, 2002. ## **OUTCOMES:** - understand the engineering of life processes. - capable of pursuing tissue engineering, biomedical engineering and biotechnology at master level programme. - apply the knowledge of biology for engineering applications. # ENB2282 CONFIDENCE BUILDING AND BEHAVIORAL SKILLS L T P C 0 0 2 1 ## (Common to all Branches) ## **OBJECTIVE:** • To enable the students to develop communication skills for verbal communication in the work place. ## **Topics Outline:** This course is practical oriented one and exercises will be given to the students group users /individually depending upon the aspect considered. The following aspect will form the broad outline content of the syllabi. The exercises will be designed by the faculty member and coordinated by the overall course coordinator. ## Lab Activities: - Introduction: Soft skills definition, examples - Verbal communication: Case study, communication and discussion - Prepared speech - Impromptu speech - Debate: Case studies Attitude and Behavior: role play and exploration - Ability to ask for help communication and team work - Manners and etiquette - Organization and Planning - Time keeping - Conduct in workplace - Conscientiousness - Work output - Professionalism - Motivation - Ownership of tasks - Adaptability/flexibility ## **Assessment:** The assessment will be continuous and portfolio based. The students must produce the record of the work done through the course of the semester in the individual classes. The portfolio may consist of a) the individual task outline and activities, b) worked out activities c) Pre-designed sheets which may be provided by the Faculty member. The portfolio will be used by the Faculty member for assessment. The course coordinator in consultation with the course committee shall decide at the beginning of the semester, the number of exercises, method of assessment of each and the weightage for the end semester assessment. **Total Hours: 30** ## **OUTCOMES:** The students should be able to: - develop verbal communication skills. - debate with other students confidently. - · communicate effectively their ideas. CSB2215 DBMS LAB L T P C 0 0 3 1 ## **OBJECTIVES:** - To make students learn the concepts of Database Management systems. - To make students create ,update and query with the data in the databases. - To make a detailed study on the applications of DBMS. ## SQL: - 1. Creating, altering and dropping tables with integrity constraints. - 2. Retrieving and modifying data from a database. - 3. Retrieving data from database using IN, BETWEEN, LIKE, ORDER BY, GROUP BY and HAVING clause. - Use of scalar and aggregate functions. - 5. Retrieving data from a database using Equi, Non Equi, Outer and Self Join. - 6. Using sub queries, rowid and rownum for retrieving data. - 7. Use of views, indexes and sequences. ## PL/SQL: - 8. Introduction to PL/SQL, using output from server. - 9. Use of implicit & explicit cursors in data handling. - 10. Exception handling Oracle defined and User defined. - 11. Use of stored procedures & functions in data manipulation. - 12. Use of trigger in data manipulation. **Total Hours: 45** ## **OUTCOMES:** - understand, appreciate and effectively explain the underlying concepts of database technologies. - declare and enforce integrity constraints on a database using a state-of-theart RDBMS. - normalize a database. - populate and query a database using SQL DML/DDL commands. ## **OPERATING SYSTEM LAB** LTPC 0 0 3 1 ## **OBJECTIVES:** - To provide hands-on
experience to implement system calls using unix. - To implement and compare the different scheduling algorithms. - To learn the memory management and file management schemes. ## LIST OF EXPERIMENTS - 1. Write programs using the following system calls of UNIX operating system: fork, exec,getpid, exit, wait, close, stat, opendir, readdir - 2. Write programs using the I/O system calls of UNIX operating system (open, read, write) - 3. Write C programs to simulate UNIX commands like ls, grep, etc. - 4. Given the list of processes, their CPU burst times and arrival times, display/ print the Gantt chart for FCFS and SJF. For each of the scheduling policies, compute and print the average waiting time and average turnaround time. - Given the list of processes, their CPU burst times and arrival times, display/ print the Gantt chart for Priority and Round robin. For each of the scheduling policies, compute and print the average waiting time and average turnaround time. - 6. Developing Application using Inter Process Communication - 7. Implement the Producer Consumer problem using semaphores (using UNIX system calls). - 8. Implement memory management schemes - 9. Implement any file allocation technique (Linked, Indexed or Contiguous) **Total Hours: 45** ## **OUTCOMES:** - write simple programs for fundamental operations of operating systems. - identify and implement CPU Scheduling, synchronization, and deadlock algorithms # MICROPROCESSOR AND MICRO CONTROLLER LAB L T P C 0 0 3 1 ## **OBJECTIVES:** - To develop an in-depth understanding of the architecture and operation of Microprocessors and Microcontrollers. - To provide adequate knowledge on assembly language programming for different processors (8085, 8086, 8051). - To give enough practice through interfacing of I/O devices with different processors. # LIST OF EXPERIMENTS - 1. Programming with 8085-8-bit/16-bit multiplication/division using repeated addition/subtraction. - 2. Programming with 8085-code conversion, decimal arithmetic, bit manipulations. - 3. Programming with 8085-matrix multiplication, floating point operations. - 4. Programming with 8086-string manipulation, search, find and replace, copy operations, sorting. - 5. Using BIOS/DOS calls: keyboard control, display, file manipulation(PC Required). - 6. Using BIOS/DOS calls: Disk operations(PC Required). - 7. Interfacing with 8085/8086-8255, 8253. - 8. Interfacing with 8085/8086-8279, 8251. - 9. 8051 Microcontroller based experiments-Simple assembly language programs. - 10. 8051 Microcontroller based experiments-Simple control applications. **Total Hours: 45** ## **OUTCOMES:** - learn the internal organization of some popular microprocessors/ microcontrollers along with their operations and write simple programs in arithmetic, string manipulation and input output operations. - interface the hardware (microprocessor) with peripheral devices/systems. ## **SEMESTER V** ## CSB3101 ALGORITHM DESIGN AND ANALYSIS LTPC 3 0 0 3 ## **OBJECTIVES:** - To demonstrate how an algorithm has been applied in a number of different domains. - To introduce formal concepts of measures of complexity and algorithms analysis. - To make students aware of computationally hard problems. ## MODULE I BASIS OF ALGORITHM ANALYSIS 7 Introduction - Stable Matching Problem - Computational Tractability - Asymptotic Order of Growth Notation - Implementing the Stable Matching Algorithm using Lists and Arrays - A Survey of Common Running Times- A More Complex Data Structure: Priority Queues. ## MODULE II GRAPHS 7 Basic Definitions and Applications - Graph Connectivity and Graph Traversal - Implementing Graph Traversal using Queues and Stacks - Testing Bipartiteness: An Application of Breadth-First Search Connectivity in Directed Graphs - Directed Acyclic Graphs and Topological Ordering. ## MODULE III GREEDY ALGORITHMS 8 Interval Scheduling: The Greedy Algorithm Stays Ahead - Scheduling to Minimize Lateness: An Exchange Argument - Optimal Caching: A More Complex Exchange Argument - Shortest Paths in a Graph - The Minimum Spanning Tree Problem - Implementing Kruskal's Algorithm: The Union-Find Data Structure - Clustering - Huffman Codes and the Problem of Data Compression. ## MODULE IV DIVIDE AND CONQUER 7 A First Recurrence: The Merge sort Algorithm - Further Recurrence Relations - Counting Inversions - Finding the Closest Pair of Points - Integer Multiplication - Convolutions and The Fast Fourier Transform. ## MODULE V DYNAMIC PROGRAMMING Weighted Interval Scheduling: A Recursive Procedure - Weighted Interval Scheduling: Iterating over - Sub-Problems - Segmented Least Squares: Multiway Choices - Subset Sums and Knapsacks: Adding a Variable - RNA Secondary Structure: Dynamic Programming Over Intervals - Sequence Alignment - Sequence Alignment in Linear Space - Shortest Paths in a Graph - Shortest Paths and Distance Vector Protocols. ## MODULE VI NP AND COMPUTATIONAL COMPLEXITY Polynomial-time Reductions - Efficient Certification and the Definition of NP - NP-Complete Problems - Sequencing Problems - Partitioning Problems - Graph Coloring - Numerical Problems - co-NP and the Asymmetry of NP - A Partial Taxonomy of Hard Problems. **Total Hours: 45** 8 8 #### **TEXT BOOK:** 1. Michael T. Goodrich and Roberto Tamassia, "Algorithm Design", 1st Edition, John Wiley & Sons, Inc. 2002. ## **REFERENCE:** 1. TH Cormen, CE Leiserson, and RL Rivest, "Introduction to Algorithms", 2nd Edition, MIT Press/ McGraw- Hill, 2001. ## **OUTCOMES:** - describe good principles of algorithm design. - analyse algorithms and estimate their worst-case and average-case behaviour (in easy cases). - become familiar with fundamental data structures and explain the way in which these data structures can best be implemented. - describe the algorithms in both functional and procedural styles. - apply the theoretical knowledge in practice. # CSB3102 OBJECT ORIENTED SOFTWARE ENGINEERING L T P C 3 0 0 3 #### **OBJECTIVES:** - Objective of the course is for students to learn to think in terms of objects, so that they can identify the objects in a system and assign responsibilities to system components. - To provide students with a working knowledge of the underlying foundations of object-oriented design and analysis and the current state of practice. - To make students aware of the linkage between the object-oriented design and software engineering solutions. ## MODULE I INTRODUCTION TO SOFTWARE ENGINEERING 7 Software engineering concepts- Software engineering development activities-Software life cycle models- Standards for developing life cycle models-Modeling with UML. ## MODULE II REQUIREMENT ELICITATION 7 Introduction- Overview of requirements elicitation- Requirement elicitation concepts-Requirement elicitation activities - Managing requirement elicitation. ## MODULE III ANALYSIS AND SYSTEM DESIGN 8 Overview of Analysis-Analysis concepts-Analysis activities- Managing analysis, System design concepts - System design activities - Managing system design. ## MODULE IV OBJECT DESIGN AND SPECIFIYING INTERFACE 9 Overview of object design- Reuse concepts- Reuse activities-Managing reuse-Overview of interface specification- Interface specification concepts- Interface specification activities- Managing object design. ## MODULE V IMPLEMENTATION AND TESTING 7 Overview of mapping- Mapping models to Code- Mapping Object Model to Database Schema- Overview of testing- Testing concepts- Testing activities- Managing testing. # MODULE VI SOFTWARE CONFIGURATION MANAGEMENT Managing and controlling Changes-Managing and controlling versions-Types of maintenance- Maintenance log and defect reports- Reverse and reengineering. **Total Hours: 45** 7 ## **TEXT BOOKS:** - 1. Stephan R. Schach, "Object oriented and classical software engineering", 8th Edition, Tata McGraw Hill, 2010. - 2. Bernd Bruegge, "Object oriented software engineering", 3rd Edition, Pearson Education, 2009. ## **REFERENCES:** - 1. Timothy C. Lethbridge, Robert Laganiere, "Object-Oriented Software Engineering A practical software development using UML and Java", 3rd Edition, Tata McGraw-Hill, 2006. - 2. S.K.Kataria, Rajiv Chopra, "Object Oriented Software Engineering", 3rd Edition, 2013. - 3. Ivar Jacobson & Magnus Christenson, "Object-Oriented Software Engineering: A Use Case Driven Approach", 1st Edition, Addison Wisely, 1992. ## **OUTCOMES:** - describe the basics of the software engineering (SE) process life cycle. - explain what object-oriented (OO) approach to software development is, through OO principles and design patterns. - relate UML (Unified Modeling Language) to Computer Aided Software Engineering. - demonstrate how to use UML tool for simple tasks. ## **COMPUTER NETWORKS** L T P C 3 0 0 3 #### **OBJECTIVES:** - To grasp the principles of data communication. - To understand the layering concepts in computer networks. - To understand the functions of each layer. - To have knowledge in different applications that use computer networks ## MODULE I INTRODUCTION TO COMPUTER NETWORKS 8 Need for Networking - Service Description -Connectionless and Connection-Oriented Services - Circuit and Packet Switching - Access Networks and Physical Media - Wireless Links and Characteristics - Queuing Delay and Packet Loss - Internet Protocol stack - OSI Reference Model - Service Models - History of Computer Networking and the Internet. #### MODULE II LINK LAYER 7 Layer Services - Error Detection and Correction Techniques - Multiple Access Protocols - Link Layer Addressing - ARP - DHCP - Ethernet - Hubs, Bridges, and Switches -PPP - ATM Networks - MPLS. Ring Topology - Physical Ring - Logical Ring. ## MODULE III NETWORK LAYER 8 Forwarding and Routing - Network Service Models - Virtual Circuit and Datagram Networks - Router - Internet Protocol (IP) - IPv4 and IPv6 - ICMP - Link State Routing - Distance Vector Routing - Hierarchical Routing - RIP - OSPF - BGP - Broadcast and Multicast Routing - MPLS - Mobile IP - IPsec. ## MODULE IV TRANSPORT
LAYER 8 Transport Layer Services - Multiplexing and Demultiplexing - UDP - Reliable Data Transfer - Go-Back-N and Selective Repeat. Connection-Oriented Transport: TCP -Segment Structure - RTT estimation - Flow Control - Connection Management - Congestion Control - TCP Delay Modeling - SSL and TLS. ## MODULE V APPLICATION LAYER 7 Principles of Network Applications - The Web and HTTP - FTP - Electronic Mail - SMTP - Mail Message Formats and MIME - DNS - Socket Programming with TCP and UDP. # MODULE VI MULTIMEDIA NETWORKING 7 Internet Telephony - RTP - RTCP - RTSP. Network Security: Principles of Cryptography - Firewalls - Application Gateway - Attacks and Countermeasures. Integrated and Differentiated Services: Intserv - Diffserv. **Total Hours: 45** ## **TEXT BOOK:** 1. James F. Kurose and Keith W. Ross, "Computer Networking: A Top-Down Approach Featuring the Internet", 3rd Edition, Pearson Education, 2006. ## **REFERENCES:** - 1. Andrew S. Tanenbaum, "Computer Networks", 4th Edition, Prentice-Hall of India, 2003. - 2. Larry L. Peterson and Bruce S. Davie, "Computer Networks: A Systems Approach", 4th Edition, Elsevier, 2007. ## **OUTCOMES:** - master the terminology and concepts of the OSI reference model and the TCP?IP reference model and explain. - describe the concepts of protocols, network interfaces, and design/ performance issues in local area networks and wide area networks. - analyze, specify and design the topological and routing strategies for an IP based networking infrastructure. - specify and identify deficiencies in existing protocols, and then go onto formulate new and better protocols. ## THEORY OF COMPUTATION LTPC 3 0 0 3 ## **OBJECTIVES:** The learning objectives of this course are to: - introduce students to the models of computation, including Turing machines, pushdown automata, and deterministic and nondeterministic finite automata. - enhance/develop students' ability to understand and conduct mathematical proofs for computation. ## MODULE I INTRODUCTION TO AUTOMATA 7 Why study Automata Theory- Introduction to Formal Proof - Additional Forms of Proof- Inductive Proofs- The Central Concepts of Automata Theory. ## MODULE II FINITE AUTOMATA 9 An Informal Picture of Finite Automata- Deterministic Finite Automata-Nondeterministic Finite Automata- Finite Automata With Epsilon Transitions-Equivalence and Minimization of Automata. ## MODULE III REGULAR EXPRESSIONS 8 Regular Expressions- Finite Automata and Regular Expressions-Pumping Lemma of regular languages- Properties of regular languages. ## MODULE IV CONTEXT-FREE GRAMMARS AND LANGUAGES 8 Context-Free Grammars- Parse Trees- Ambiguity in Grammars and Languages- Normal Forms of Context Free Grammars- Pumping Lemma of Context Free Languages. ## MODULE V PUSH DOWN AUTOMATA 7 Definition of the Pushdown Automaton - The Languages of a PDA- Equivalence of PDA's and CFG's- Deterministic Pushdown Automata. ## MODULE VI TURING MACHINES 6 The Turing Machine- Programming Techniques for Turing Machines- Extensions to the Basic Turing Machine- Turing Machines and Computers. Total Hours: 45 ## **TEXT BOOKS:** - 1. John Hopcroft, Rajeev Motwani & Jeffry Ullman "Introduction to Automata Theory, Languages & Computation", 3rd Edition, Pearson Education, 2012. - 2. John C Martin, "Introduction to Languages and Automata Theory", 3rd Reprint Edition, Tata McGraw-Hill, 2008. ## **REFERENCES:** - 1. Michael Sipser, "Introduction to the Theory of Computation", 3rd Edition, PWS Publishing Company, 2013. - 2. George Tourlakis, "Theory of Computation", 1st Edition, John Wiley & Sons, 2012. - 3. Kamala Krithivasan & R. Rama, "Introduction to Formal Languages, Automata Theory and Computation", 1st Edition, Pearson Education, 2009. ## **OUTCOMES:** - describe the mentality of Automata Theory as the basis of all computer science languages design. - explain the Automata theory concepts such as RE's, DFA's, NFA's, Turing machines, and Grammars. - design FAs, NFAs, Grammars, languages modeling, small compilers basics. - minimize FA's and Grammars of Context Free Languages. ## MSB3181 # MANAGEMENT OF BUSINESS ORGANISATION L T P C 3 0 0 3 #### **OBJECTIVES:** - To give an exposure to principles of management and organizational structures. - To introduce concepts of operation and material management. - To provide an understanding of management of human resources. - To impart some basic knowledge on marketing, pricing and selling. - To give an overview of accounting and management of finance. ## MODULE I PRINCIPLES OF MANAGEMENT 7 Functions of management - Planning - Organizing - Staffing - Direction - Motivation - Communication - Coordination - Control, organizational structures - Line - Line and staff - Matrix type, functional relationships - Span of control, Management by Objectives (MBO) - Forms of Industrial ownership. ## MODULE II OPERATIONS MANAGEMENT 8 Introduction to operations management - Functions of production/operations management - Types of production, Overview of facility location - Lay out planning, introduction to production planning and control, work study, quality assurance, lean manufacturing and six sigma, plant maintenance and management. #### MODULE III MATERIALS MANAGEMENT 8 Materials Planning - Types of inventory, Purchasing function - Source selection - Negotiation - Ordering, Stores management - Functions - Types of stores - Overview of inventory control, Introduction to newer concepts: MRP-I - MRP-II - ERP - JIT. ## MODULE IV HUMAN RESOURCE MANAGEMENT 7 Human Resource Management - Objectives - Role of Human Resource Manager - Manpower planning - Selection and placement - Training - Motivation - Performance assessment - Introduction to grievances handling and labour welfare. ## MODULE V MARKETING MANAGEMENT Marketing - Concept and definition - Elements of marketing mix - PLC - Steps in new product development - Pricing objectives and methods - Advertising types/media - Steps in personal selling - Sales promotion methods - Distribution channels: functions, types. #### MODULE VI FINANCIAL MANAGEMENT 8 7 Financial management functions - Introduction to financial accounts, financial performance - Profit and loss account statement - Balance sheet, budgetary control - Meaning - Uses - limitations - Types of costs - Basics of depreciation methods -Break-even analysis - Meaning - Assumption - Uses and limitations, working capital - Meaning and relevance - Use of operating ratios. **Total Hours: 45** ## **REFERENCES:** - Bhushan Y.K., "Fundamentals of Business Organisation and Management", Sultan Chand & Co., 2003. - 2. Banga & Sharma "Industrial Engineering & Management", 11th Edition, Khanna Publications, 2007. - 3. Khanna, O.P., "Industrial Engineering & Management", Dhanpat Rai Publications, 2004. - 4. S.N.Maheswari "Principles of Management Accounting", 16th Edition, S.Chand & Company Ltd, 2007. #### **OUTCOMES:** After doing the course, - the students would have gained basic knowledge of the concepts of management and the functions of management. - the students would have learnt fundamentals of the functional areas of management viz., operations management, materials management, marketing management, human resources management and financial management. ## **ENB3181** # CAREER BUILDING & PEOPLE SKILLS L T P C 0 0 2 1 (Common to all branches) ## **OBJECTIVE:** To prepare the students for building their competencies and career building skills. ## **COURSE OUTLINE:** This course is practical oriented one and exercises will be given to the students group users /individually depending upon the aspect considered. The following aspect will form the broad outline content of the syllabi. The exercises will be designed by the faculty member and coordinated by the overall course coordinator. ## LAB ACTIVITIES: - Preparation for the placement - Group discussions: Do's and Don'ts handling of Group discussions What evaluators look for. - Interview awareness of facing questions Do's and Don'ts of personal interview. - Selection of appropriate field vis-à-vis personality / interest. - Preparation of Resume-Objectives, profiles vis-à-vis companies requirement. - Enabling students to prepare for different procedures / levels to enter into any company books / websites to help for further preparation. - Technical interview how to prepare and face it. - Workplace skills - Presentation skills - Oral presentations - Technical presentations - Business presentations - Technical writing - Interpersonal relationships with colleagues clients understanding one's own behavior - perception by others. ## **ASSESSMENT:** As the course is practical one, it will be assessed using a portfolio based assessment. The students must in consultation with the Faculty member, plan a portfolio of evidence for the above mentioned activities. The students must develop a résumé or résumés that promote own ability to meet specific job requirements and plan their portfolio in a format appropriate to industry they wish to target. The case studies will contain direct observation of the candidate developing career plans, résumés and skills portfolio, reflect written or oral questioning to assess knowledge and problem-solving activities to assess ability to align career aspirations with realistic career goals. The course coordinator in consultation with the course committee will decide the number of exercises and mark to be awarded for each beside the weightage for the end semester assessment. **Total Hours: 30** ## **OUTCOMES:** - develop team work skills. - take part effectively in various selection procedures followed by the recruiters. ## **ALGORITHM ANALYSIS LAB** LTPC 0 0 3 1 ## **OBJECTIVES:** - To analyze and compute the time and space complexity of the algorithm. - To implement various traversing techniques and construct graph and tree from the given data to manipulate the complexity of the algorithm. - To design and implement various sorting methodologies to analyze the algorithm. ## LIST OF
EXPERIMENTS - 1. Writing a simple program of analyzing the complexity of the algorithm. - 2. Comparing of any two searching algorithms with respect to time complexity. - 3. Using suitable data structure represent a graph and write algorithm to traverse the graph (BFS, DFS) - 4. Design and implement prim's algorithm to construct a minimum spanning tree and analyze the same for its complexity. - 5. Design and implement Kruskal's algorithm to construct a minimum spanning tree and analyze the same for its complexity. - 6. Using divide and conquer concept design and analyze an algorithm to implement Quick sort. - 7. Design and implement an algorithm for Merge sort and compute its time and space complexity. - 8. Implement priority queue using heapsort - 9. Implement Dijkstra's algorithm using priority queues - 10. Implement a backtracking algorithm for Knapsack problem **Total Hours: 45** ## **OUTCOMES:** - understand, implement, and compare fundamental data structures. - implement the logic using efficient data structure which enables traversing efficiently which could be computed by using various analysis strategy based on the application. - understand the tree, graph and dynamic programming concepts and analyze them based on complexity. ## **CASE TOOLS LAB** L T P C 0 0 3 1 ## **OBJECTIVES:** - To understand how CASE (Computer Aided Software Engineering) tools are used in various stages of the Software Development Life Cycle. - To become familiar with UML(Unified Modeling Language). - To learn how to test the developed software using Rational Rose. ## LIST OF EXPERIMENTS: - 1. Student Marks Analyzing System. - 2. Quiz System. - 3. Online Ticket Reservation System. - 4. Payroll System. - 5. Course Registration System. - 6. Expert Systems. - 7. ATM Systems. - 8. Stock Maintenance. - 9. Real-Time Scheduler. - 10. Remote Procedure Call Implementation. **Total Hours: 45** ## **OUTCOMES:** - develop coding and apply CASE tool in all the phases of software development. - draw Use case diagram, Class diagram, Sequence diagram and collaboration diagram. - test the software, memory usage of the software and validate the text box using Rational Rose. # **NETWORKS LAB** L T P C 0 0 3 1 ## **OBJECTIVES:** - To create TCP/IP sockets and transfer files using different commands. - To transfer files in client server architecture using different protocols and also learn to manage errors. - To implement and compare different routing algorithms for reliable data transfer. ## LIST OF EXPERIMENTS: - 1. Write a socket Program for Echo / Ping / Talk commands. - 2. Create a socket (TCP) between two computers and enable file transfer between them. - 3. Write a program to implement Remote Command Execution - 4. Write a program to implement CRC and Hamming code for error handling. - 5. Write a code simulating Sliding Window Protocols. - 6. A Client ? Server application for chat. - 7. Write a program for File Transfer in client-server architecture using following methods. - a. USING RS232C - b. TCP/IP - 8. Perform implementation of routing algorithms to select the network path with its optimum and economical during data transfer. - a. Shortest path routing - b. Flooding - c. Link State - d. Hierarchical **Total Hours: 45** # **OUTCOMES:** - apply basic concept of TCP/IP protocol and implement it. - simulate network protocols to check the functionality of diffferent routing algorithms for efficient data transfer without dataloss. ## **SEMESTER VI** ## CSB3211 MOBILE AND PERVASIVE COMPUTING L T P C 3 0 0 3 7 ## **OBJECTIVES:** - To understand the details of how to observe people might be using ubiquitous computing technology. - To focus on moving from the graphical to the ubiquitous computing user interface. - To study how to effectively process sensor data. - To gain knowledge on how to maintain privacy in systems that inherently needs to connect with personal devices and information. ## MODULE I INTRODUCTION TO MOBILE AND PERVASIVE COMPUTING 8 Founding Contributions to Ubiquitous Computing - Tabs, Pads, and Liveboards - From Distributed Computing to Pervasive Computing - Research Areas that make up pervasive computing - Modern Directions in Ubiquitous Computing. ## MODULE II MOBILE AND PERVASIVE COMPUTING DEVELOPMENT 8 Ubicomp Systems Topics and Challenges-Creating Ubicomp Systems - Implementing Ubicomp Systems - Evaluating and Documenting Ubicomp Systems - Understanding Privacy and Security-Technical Solutions for Ubicomp Privacy. ## MODULE III WIRELESS ADHOC SENSOR NETWORKS Wireless pervasive network basics- Designing the topology - Analysing the power, receiving signal strength - IEEE 802.11 standard MAC protocols - Wireless Adhoc and sensor network protocol for pervasive computing: AODV, DSR, DSDV, LEACH - Wireless transport layer protocols for pervasive computing: TCP, UDP, Multimedia data protocols: RTP, RTCP. ## MODULE IV INTERFACES FOR UBIQUITOUS COMPUTING 8 From Graphical User Interfaces to Context Data - Interaction Design - System design - Design patterns -Classes of User Interface - Input Technologies - Interface Usability Metrics. ## MODULE V CONTEXT-AWARE COMPUTING Context-Aware Computing -Feature - Context-Aware Applications - Environmental Controls- Designing and Implementing Context-Aware Applications - Design Process - Tools - Issues-Context Ambiguity. ## MODULE VI SECURITY, PRIVACY AND TRUST MANAGEMENT 7 Agents, Control policies, credentials and action types, Trust negotiation and management for Pervasive Computing, Securing Pervasive Computing Environments, Privacy issues, Enhancing privacy for pervasive environments. **Total Hours: 45** 7 ## **TEXT BOOKS:** - John Krumm, "Ubiquitous Computing fundamentals", Taylor & Francis Group, CRC Press, 2010. - 2. Adam Greenfield,"Everyware: The Dawning Age of Ubiquitous Computing",1st Edition, New Riders, 2006. - 3. Adelstein et al., "Fundamentals of Mobile and Pervasive Computing", Tata McGraw Hill Publishers, 2005 - 4. Yang et al., "Handbook of Mobile and Pervasive Computing: Status and perspective", CRC Press, 2012. #### **OUTCOMES:** - differentiate pervasive way of computing from everyday computing. - trace how the combination of availability, access anytime has spawned the need for pervasive computing systems. - describe how contexts can help in building pervasive systems. - explain how wireless sensor systems work. - write about security, privacy and trust in pervasive computing environments. # INTRODUCTION TO COMPILER CONSTRUCTION L T P C 3 0 0 3 #### **OBJECTIVES:** - To introduce the major concept areas of language translation and compiler design. - To enrich the knowledge in various phases of compiler ant its use, code optimization techniques, machine code generation, and use of symbol table. - To extend the knowledge of parser by parsing LL parser and LR parser. - To provide practical programming skills necessary for constructing a compiler. ## MODULE I LEXICAL ANLAYSIS 6 Language processors - The structure of a Compilers - The evolution of programming languages- The science of building a compiler- Applications of Compiler technology- Programming language basics- Lexical analysis: The Role of Lexical Analyzer- Input Buffering- Specifications of Tokens- Recognition of Tokens. ## MODULE II SYNTAX ANALYSIS 8 Introduction- Context-free Grammars; Writing a Grammar-Top-down Parsing - Bottom-up Parsing- Introduction to LR Parsing: Simple LR - More powerful LR parsers- Using ambiguous grammars -Parser Generators. ## MODULE III SYNTAX-DIRECTED TRANSLATION 8 Syntax-Directed definitions- Evaluation order for SDDs-Applications of Syntax-directed translation- Syntax-directed translation schemes. ## MODULE IV INTERMEDIATE CODE GENERATION 8 Variants of syntax trees- Three-address code- Types and declarations-Translation of expressions- Type checking- Control flow- Back patching- Switch statements- Intermediate code for procedures. ## MODULE V RUN TIME ENVIRONMENTS 9 Storage Organization - Stack allocation of space - Access to non-local data on the stack Heap management - Introduction to garbage collection. ## MODULE VI CODE GENERATION Issues in the design of Code Generator - The Target language; Addresses in the target code Basic blocks and Flow graphs - Optimization of basic blocks - A Simple Code Generator. **Total Hours: 45** 6 ## **TEXT BOOK:** Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, "Compilers-Principles, Techniques and Tools", 2nd Edition, Pearson Education, 2008. #### **REFERENCES:** - 1. Parag Himanshu Dave and Himanshu Bhalchandra Dave, "Compilers: Principles and Practice", 1st Edition, Pearson Education, 2012. - 2. Keith Cooper and Linda Torczon, "Engineering a Compiler", 2nd Edition, Morgan Kauffman Publications, 2011. ## **OUTCOMES:** - apply the knowledge of lex tool & yacc tool to develop a scanner & parser. - design & conduct experiments for Intermediate Code Generation in compiler. - design & implement a software system for backend of the compiler. - use the knowledge of patterns, tokens & regular expressions for solving a problem in the field of data mining. ## ARTIFICIAL INTELLIGENCE L T P C 3 0 0 3 ## **OBJECTIVES:** - To present the basic representation and reasoning paradigms used in AI in both theory and practice with careful attention to the underlying principles of logic, search, and probability. - To show students practical examples of the use of Al in applications. - To give students a sound practical introduction to knowledge based systems and a basic introduction to modern paradigms of knowledge representation and belief networks. - To provide an introduction to the underlying issues in cognitive emulation and provide an opportunity for practical exercises in logic and probability. ## MODULE I DEFINITION AND RUDIMENTARY METHODS 7 Definition of Artificial Intelligence - Strong AI Vs Weak AI - Early history of AI - Recent history of AI to present - Intelligent Agents - Agents and environments - Application and methods - Neural Computing -
Genetic Algoirthms - Fuzzy Logic - Uninformed search strategies - Avoiding repeated states - Searching with partial information. ## MODULE II SEARCHING TECHNIQUES 8 Informed search and exploration - Informed search strategies - Heuristic function - Local search algorithms and optimistic problems - Local search in continuous spaces - Online search agents and unknown environments - Constraint satisfaction problems (CSP) - Backtracking search and Local search for CSP - Structure of problems - Adversarial Search - Games - Optimal decisions in games - Alpha - Beta Pruning - Imperfect real-time decision - Games that include an element of chance. ## MODULE III KNOWLEDGE REPRESENTATION 8 First order logic - Representation revisited - Syntax and semantics for first order logic - Using first order logic - Knowledge engineering in first order logic - Inference in First order logic - Prepositional versus first order logic - Unification and lifting - Forward chaining - Backward chaining - Resolution - Knowledge representation - Ontological Engineering - Categories and objects - Actions - Simulation and events - Mental events and mental objects. 8 Learning from observations - Forms of learning - Inductive learning - Learning decision trees - Ensemble learning - Knowledge in learning - Logical formulation of learning - Explanation based learning - Learning using relevant information - Inductive logic programming - Statistical learning methods - Learning with complete data - Learning with hidden variable - EM algorithm - Instance based learning - Neural networks - Reinforcement learning - Passive reinforcement learning - Active reinforcement learning - Generalization in reinforcement learning. # MODULE V APPLICATIONS NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL Communication - Communication as action - Formal grammar for a fragment of English - Syntactic analysis - Augmented grammars - Semantic interpretation - Ambiguity and disambiguation - Discourse understanding - Grammar induction - Probabilistic language processing - Probabilistic language models - Information retrieval - Information Extraction - Machine translation. # MODULE VI APPLICATIONS - GAMING AND AI IN THE TWENTY FIRST CENTURY 7 7 Checkers - From Samuel to Schaeffer - Heuristic methods - Rote learning and Generalization - Chess: programming methods - Contributions of computer chess to Artificial Intelligence - Other Games - Al in the 21st Century. **Total Hours: 45** ## **TEXT BOOK:** 1. Stuart Russell, Peter Norvig, "Artificial Intelligence - A Modern Approach", 3rd Edition, Pearson Education / Prentice Hall of India, 2009. ## **REFERENCES:** - 1. Stephen Lucci, Danny Kopec," Artificial Intelligence in the 21st Century", Mercury Learning and Information, 2012. - 2. Kevin Warwick, "Artificial Intelligence: The Basics", Routledge Publications, 2011. ## **OUTCOMES:** - describe the fundamental concepts in Artificial Intelligence. - provide a basic exposition to the goals and methods of Artificial Intelligence. - apply any five artificial intelligence techniques in applications which involve perception, reasoning and learning. # GE B3201 ENVIRONMENTAL SCIENCE AND ENGINEERING L T P C 3 0 0 3 #### **OBJECTIVE:** • To impart the basic scientific knowledge on the environment and human impacts on various elements of environment and assessment tools. ### MODULE I PHYSICAL ENVIRONMENT 8 Earth's surface - the Interior of Earth - Plate Tectonics - Composition of the Crust: Rocks - formation & types, Soils - formation & components - Soil profile. Atmosphere - Structure & composition - Weather & climate - Tropospheric airflow. Hydrosphere - Water budget - Hydrological cycle - Rainwater & precipitation, River Water & solids, Lake Water & stratification, Seawater & solids, soil moisture & groundwater. Bioelement cycling - The Oxygen cycles - The carbon cycle - The nitrogen cycle - The phosphorous cycle - The sulfur cycle sodium, potassium & magnesium cycles. ## MODULE II BIOLOGICAL ENVIRONMENT 7 Cellular basis of life - Prokaryotes & eukaryotes - Cell respiration - Photosynthesis - DNA & RNA - Genetically modified life. Population dynamics - Population - Population growth - Survival & growth curves - Population regulation - Future of human population. Biological communities - Five major interactions: competition, predation, parasitism, mutualism and commensalism - Concepts of habitat & niche - Natural selection - Species richness & species diversity - Ecological succession & climax. Ecosystem & Biomes - Food Chains & food webs - Biomagnifications - Ecological pyramids - Trophic levels - Energy flow in ecosystem - Ecosystem stability - Terrestrial & aquatic biomes. # MODULE III IMPACTS ON NATURAL RESOURCES & CONSERVATION 9 Biological resources - Nature & importance - Direct damage - Introduced species - Habitat degradation, loss and fragmentation - Values of biodiversity - Hotspots of biodiversity, threats to biodiversity- Endangered and endemic species of India- Conservation of biodiversity, in-situ and ex-situ conservation. Land Utilization - Past patterns of land use - Urban & Industrial development - deforestation, salinisation, soil erosion, and desertification - Modern Agriculture & Impacts. Major extractive industries - Metals & ores - Building materials - Peat - Fossil fuels (coal, oil, natural gas). Waste management - Types of solid wastes - Disposal options -Reduce, recovery & reuse - Waste minimization, cleaner production technology. ## MODULE IV IMPACTS ON WATER & AIR AND CONSERVATION 8 Water pollution - Organic oxygen demanding wastes - Anthropogenic phosphate & eutrophication - Ground water contamination - Usage of fertilizer and pesticides - Acid rain - acid mine discharges - Toxic metals - Organochlorines - Endocrine disrupting substances - treatment process - Rain water harvesting and watershed management - Manmade radionuclide's - Thermal pollution. Atmospheric pollution - Primary & secondary pollutants - Anthropogenic, xenobiotic, synergism, sources & sink, residence time, levels & impacts of major pollutants - Processes leading to smog, acid rain, global warming, stratospheric ozone depletion. Noise pollution and abatement. # MODULE V IMPACTS ON ENERGY AND CONSERVATION, ENVIRONMENTAL CRISIS 8 Energy - Renewable and non renewable energy resources -Thermal power plants - Nuclear fuels, fossil fuels, solar energy, wind energy, wave energy, tidal energy, ocean thermal energy, hydropower, geothermal energy, biomass energy. Environment crisis - State of environment in developed and developing countries- Managing environmental challenges for future - Disaster management, floods, earthquake, cyclone and landslides. # MODULE VI ENVIRONMENTAL IMPACT ASSESSMENT AND SUSTAINABILITY 5 Environmental Impact Assessment - Impacts: magnitude & significance - Steps in EIA - methods - Precautionary principle & polluter pays principle - Role of NGOs & Public - Value education - Environment protection act (air, water, wild life) and forest Conservation act. Concept of Sustainability - Sustainable Development - Gaia Hypothesis - Traditional Knowledge for sustainability. **Total Hours: 45** ## **TEXT BOOKS:** - 1. Andrew R. W. Jackson and Julie M. Jackson ,"Environmental Science (The Natural Environment and Human Impact)", Pearson Education Limited, Harlow, Essex, England, 2000. - 2. G Tyler Miller, Jr., Thomson Brooks/Cole, "Environmental Science (Working with the Earth)", 2006. ## **REFERENCES:** - David McGeary & Charles C Plummer, "Physical Geology, Earth Revealed", WCB McGraw Hill, 1998. - 2. Bryan G. Norton, "Sustainability: A Philosophy of Adaptive Ecosystem Management", 2005. - 3. Larry W. Canter, "Environmental Impact Assessment", McGraw-Hill, 1996. - 4. Lovelock, "The Revenge of Gaia: Why the Earth is Fighting Back and How We Can Still Save Humanity", Penguin UK, 2007. ## **OUTCOMES:** - gain basic scientific knowledge on the environment. - human impacts on various elements of environment and assessment tools. ## CSB3214 MOBILE AND PERVASIVE COMPUTING LAB L T P C 0 0 3 1 ## **OBJECTIVE** • To explain the basics of wireless systems and implement pervasive computing constructs from a routing, data management, security and privacy perspective. ## Lab Activities: - Creating a wireless pervasive network - Creation of the network - Designing the topology - Analysing the power, receiving signal strength - Implementing and simulating various IEEE 802.11 standard MAC protocols - Implementing the wireless adhoc and sensor network protocol for pervasive computing - AODV - DSR - DSDV - LEACH - Implementing wireless transport layer protocols for pervasive computing - TCP - UDP - Multimedia data protocols - RTP - RTCP - Security protocols for pervasive computing - Privacy preservation of Data - Horizontal and vertical partitioning - Application development - Mini project (Any one domain) # B.Tech. Computer Science & Engg. - Sensor network - Context awareness - Privacy - Security **Total Hours: 45** # **OUTCOMES:** - create a pervasive wireless environment. - analyze the pervasive wireless environment for power and various QoS metrics. - implement pervasive applications for security and privacy. ## **COMPILER TECHNIQUES LAB** L T P C 0 0 3 1 #### **OBJECTIVES:** - To understand the working of lexical analyzer. - To study tools like LEX and YACC to design lexical analyzer and produce a parser for a given grammar. - To design and implement a compiler for a simple language. ## LIST OF EXPERIMENTS: - 1. Implement a lexical analyzer in "C". - 2. Use LEX tool to implement a lexical analyzer. - 3. Implement a recursive descent parser for an expression grammar that generates arithmetic expressions with digits, + and *. - 4. Use YACC and LEX to implement a parser for the same grammar as given in problem. - 5. Write semantic rules to the YACC program in problem 5 and implement a calculator that takes an expression with digits, + and * and computes and prints its value. - 6. Implement the
front end of a compiler that generates the three address code for a simple language with: one data type integer, arithmetic operators, relational operators, variable declaration statement, one conditional construct, one iterative construct and assignment statement. - 7. Implement the back end of the compiler which takes the three address code generated. **Total Hours: 45** #### **OUTCOMES:** - describe the working concepts of a compiler. - design and implement a simple compiler and demonstrate its working. - have hands on expertise on use of tools such as LEX and YACC lexical analyzer. CSB3216 FOSS LAB L T P C 1 0 2 1 #### **OBJECTIVES:** - To help demystify the tools in Open source technologies. - To explain the impact of open source technology in programming. ## Lab Activities: - Case study: Proprietary Vs Open Source tools - Mapping from Proprietary tools to Open source tools An Analysis - Deploy a LAMP stack in Linux - Application analysis and comparison - Create a simple application for text processing regular expression using Java in Linux - Use grep tool to simulate the same operations - Compare the impact of using the proprietary tools and specialized open source component - Simulate the cut command - Estimate the lines of code in the proprietary tool - Create an application that uses all the LAMP stack components - Apache server - MySQL database - PHP script must be used to create a simple application and this must be deployed and tested - GUI processing using Python - Open source applications for research Case study - Take any one application domain like Data mining, Network security - Run a simple task in that tool - Deploy it - Compare the experience with that of a proprietary tool # B.Tech. Computer Science & Engg. - Social Computing - Implement the power saving steps in Linux to conserve energy - Use Power TOP tool to visualize power consumption of a system - Indic Language computing tools **Total Hours: 45** ## **OUTCOMES:** - analyze and understand the differences between the open source model and the commercial proprietary model. - gain hands-on skills and experience in using a variety of open source software. - develop and deploy a project based purely on open source tools. ## **SEMESTER VII** ## CSB4101 INFORMATION SECURITY L T P C 3 0 0 3 ## **OBJECTIVES:** - To introduce varied security considerations associated with storage, processing and communication of information. - To provide fundamental understanding of cryptography mechanisms available. - To expose different facets of securing information. - To create awareness of legal and ethical issues associated with information security. ## MODULE I INTRODUCTION 7 Security problem in computing - Secure system characteristics - What to secure -How to secure- Cost of Security - Introduction to Information security, CIA triad - Security Models, Attacks and Defense. ## MODULE II PRINCIPLES 8 Identification - Authentication - Authorization - Access Control - Auditing - Accountability. # MODULE III CRYPTOGRAPHY FUNDAMENTALS 7 History of Cryptography - Cryptographic Algorithms: Symmetric Key Cryptography, Asymmetric Key Cryptography and Hash functions - Digital Signatures. ## MODULE IV OPERATIONS SECURITY AND PHYSICAL SECURITY 8 Operational security overview: identifying critical information, analyzing threats, analyzing vulnerabilities, determining risks, and planning countermeasures - Laws of OPSEC. Physical security overview - physical security controls and mitigation: deterrent, detective, and preventive measures. ## MODULE V NETWORK AND OPERATING SYSTEM SECURITY Network security overview - Design and segmentation aspect of networks - Firewalls - Intrusion Detection Systems- VPNs - Securing WiFi - Tools for OS security - Hardening - Anti-malware tools, software firewalls, and host-based intrusion detection systems. # MODULE VI APPLICATION SECURITY, LEGAL AND ETHICAL CONSIDERATIONS 7 Application Security: Vulnerabilities common to the software development process- Database Security - Web Security. Legal and Ethical Aspects: Protecting Programs and Data - Information and the Law -Software Failures - Computer Crime - Privacy - Ethical Issues. **Total Hours:45** #### **TEXTBOOKS:** - 1. Jason Andress,"The Basics of Information Security: Understanding the Fundamentals of InfoSec in Theory and Practice", 1st Edition, Syngress Press, 2011. - 2. Charles B. Pfleeger, and Shari Lawrence Pfleeger, "Security in Computing", 4th Edition, Prentice Hall, 2006. #### **REFERENCE:** 1. Mark Stamp, "Information Security: Principles and Practices", 2nd Edition, Wiley Publications, 2011. # **OUTCOMES:** On successful completion of this course, the students will be able - to identify the different types of threats to information security and take necessary actions. - access and deal with different information security threats. - understand taken into account legal and ethical aspects when taking decisions pertaining to information handling. ## CSB4102 DATA MINING AND WAREHOUSING L T P C 3 0 0 3 #### **OBJECTIVES:** - To learn OLTP and Developing a Data Warehouse. - To understand Data mining techniques and algorithms. - Comprehend the data mining environments and application. # MODULE I INTRODUCTION 7 Introduction - Data warehouse delivery method - System process - typical process flow within a Data warehouse - Data warehousing Components - Building a Data warehouse - Mapping the Data Warehouse to a Multiprocessor Architecture - DBMS Schemas for Decision Support - Data Extraction, Cleanup, and Transformation Tools - Metadata - reporting - Query tools and Applications - Online Analytical Processing (OLAP) - OLAP and Multidimensional Data Analysis. #### MODULE II DATA MINING AND ASSOCIATION RULE 7 Data Mining: - Data Mining Functionalities - Data Preprocessing - Data Cleaning - Data Integration and Transformation - Data Reduction - Hierarchy Generation - Association Rule Mining: - Efficient and Scalable Frequent Item set Mining Methods - Mining Various Kinds of Association Rules - Association Mining to Correlation Analysis - Constraint- Based Association Mining. # **MODULE III CLASSIFICATION AND PREDICTION** 7 Classification and Prediction: - Issues Regarding Classification and Prediction - Classification by Decision Tree Introduction - Bayesian Classification - Rule Based Classification - Classification by Back propagation - Support Vector Machines - Associative Classification - Lazy Learners - Other Classification Methods - Prediction - Accuracy and Error Measures - Evaluating the Accuracy of a Classifier or Predictor - Ensemble Methods - Model Section. # MODULE IV CLUSTER ANALYSIS 7 Cluster Analysis: - Types of Data in Cluster Analysis - A Categorization of Major Clustering Methods - Partitioning Methods - Hierarchical methods - Density-Based Methods - Grid-Based Methods - Model-Based Clustering Methods - Clustering High-Dimensional Data - Constraint - Based Cluster Analysis - Outlier Analysis. ## MODULE V MULTIDIMENSIONAL ANALYSIS Mining Object, Spatial, Multimedia, Text and Web Data: Multidimensional Analysis and Descriptive Mining of Complex Data Objects - Spatial Data Mining - Multimedia Data Mining - Text Mining - Mining the World Wide Web. # MODULE VI MINING ENVIRONMENT - CASE STUDY 9 Data Mining Environment: Case studies in building business environment, Application of data warehousing and Data mining in Government, National Data ware houses - Case studies. **Total Hours: 45** #### **TEXT BOOKS:** - 1. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", 2nd Edition, Elsevier, 2008. - 2. Alex Berson and Stephen J. Smith, "Data Warehousing, Data Mining & OLAP", 10th reprint, Tata McGraw Hill, 2007. #### REFERENCES: - 1. K.P. Soman, Shyam Diwakar and V.Ajay, "Insight into Data mining Theory and Practice", 2nd print, Easter Economy Edition, Prentice Hall of India, 2006. - 2. G. K. Gupta, "Introduction to Data Mining with Case Studies", Easter Economy Edition, PHI, 2006. #### **OUTCOMES:** - describe the operation of a data mining system. - provide a comprehensive overview of different data mining tasks and the algorithms most appropriate for addressing these tasks. - creatively deal with data related issues that need to be addressed for successful data mining to be carried out. - critique emerging standards for data mining and apply them to practical scenarios. - conceptualize a data mining solution to a practical problem. #### **CSB4103** #### **DISTRIBUTED COMPUTING** L T P C 3 0 0 3 #### **OBJECTIVES:** - To expose students to the fundamental principles common to the design and implementation of programs that run on two or more interconnected computer systems. - To addresses issues that can be solved within the framework of distributed systems. - To describes successful distributed computing paradigms in the form of abstract models, algorithms and detailed case studies of widely-used system builds on basic knowledge of programming paradigms, API's, fundamentals of operating systems and protocols and standards for net-centric computing. # MODULE I DISTRIBUTED COMPUTING PARADIGMS 8 Distributed Computing Systems: Definition - System Models - Advantages of Distributed Systems - Strengths and weaknesses of Distributed computing - Design Challenges - Distributed Computing Environment - Networking and Internetworking - Types of Networks - Network Principles - Internet Protocols. # MODULE II COMMUNICATION 8 Interprocess Communication Case Study - Distributed Objects and Remote Invocation - Communication Between Distributed Objects - Remote Procedure Call - Events and Notifications - Java RMI - Case Study - Message Passing: Fundamental Concept - Features - Issues - Synchronization - Buffering - Message Encoding and Decoding - Process addressing - Failure Handling - Remote Procedure Calls: RPC Model - Transparency - Implementation - Stub Generation - RPC Messages - Marshaling - Communication Protocols - Client-Server Binding - Lightweight RPC. #
MODULE III MEMORY 8 Distributed shared Memory - Basic Concept - General Architecture - Advantages - Design Issues - Structuring Approaches - Consistency Models - Replacement Strategy - Thrashing - Synchronization Mechanisms: Clock Synchronization - Event ordering - Mutual Exclusion - Deadlock - Election Algorithms. #### MODULE IV RESOURCE MANAGEMENT Resource Management: Basic Concept - Features - Task Assignment approach - Load Balancing Approach - Load-Sharing Approach - Process Management: Basic Concept - Process Migration - Threads. #### MODULE V FILE SYSTEMS 7 7 Distributed File Systems: Uses - Services - Features - File Models - Accessing Models - Sharing Semantics - Caching Schemes - File Replication - Fault Tolerance - Atomic Transactions - Design Principles. # MODULE VI NAMING AND SECURITY 7 Naming Systems: Features - Fundamental Terminologies and Concepts -System Oriented Names - Object Locating Mechanisms - Human Oriented Names - Name Caches - Naming and Security - Case Studies: V-System -Mach. **Total Hours: 45** #### **TEXT BOOKS:** - A.D. Kshemkalyani, M. Singhal, "Distributed Computing: Principles, Algorithms and Systems", Paperback Edition, Cambridge University Press, 2011. - 2. Pradeep K. Sinha, "Distributed Operating Systems - Concepts, Systems and Applications", 3rd Edition, Prentice Hall India, New Delhi, 2008. # **REFERENCES:** - George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", 3rd Edition, Pearson Education, 2002. - 2. Andrew S Tanenbaum, Maartenvan Steen, "Distributed Systems - Principles and Pardigms",2nd Edition, Pearson Education, 2007. ## **OUTCOMES:** - apply problem solving (analysis, design, and development) skills to distributed applications. - identify and decompose complex distributed systems into its components parts. - integrate OS and programming language concepts to solve/implement the (distributed) components of the systems. #### CSB4105 # **INFORMATION SECURITY LAB** 0 0 3 1 #### **OBJECTIVES:** - To understand the basics of network communication. - To establish server client communication. - To study and implement simple security algorithm. # **LIST OF EXPERIMENTS:** - 1. Using Sniffers for monitoring network communication (Ethereal) - Understanding of cryptographic algorithms and implementation of the same in C or C++ - 3. Using open SSI for web server browser communication - 4. Using GNU PGP - 5. Performance evaluation of various cryptographic algorithms - 6. Using IPTABLES on Linux and setting the filtering rules - 7. Configuring S/MIME for e-mail communication - 8. Understanding the buffer overflow and format string attacks - 9. Using NMAP for ports monitoring **Total Hours: 45** # **OUTCOMES:** - understand and establish network communication. - implement and analyze the working of simple security algorithm. - monitor flow of information in the network and look for vulnerability. #### CSB4106 # DATA MINING AND TOOLS LAB L T P C 0 0 3 1 #### **OBJECTIVES:** - To pre-process for Data mining and Data warehousing. - To demonstrate the need for Data Mining and advantages to the business and scientific world. - To implement Data Mining techniques various scenarios and the scope of their applicability. # LIST OF EXPERIMENTS: (Can be implemented in any one open source Data mining Tool) - 1. To perform various commands given in PL/SQL in Oracle 8.0(For brushing up.) - 2. To perform the correlation analysis between for the given data set. - 3. To perform the attribute relevance analysis on the given data. - 4. To perform the information gain for a particular attribute in the given data. - 5. To perform the experiment to predict the class using the Bayesian classification. - 6. To perform various data mining algorithms like - · clustering, - Association rule mining - · classification Using the dataset from the UCI repository Total Hours: 45 # **OUTCOMES:** - analyze and understand the various types of data they encounter and how to analyze it. - gain hands-on skills and experience in using a variety data mining techniques. # CSB4107 MOBILE APPLICATION DEVELOPMENT LAB L T P C 0 0 3 1 #### **OBJECTIVES:** - Comprehensive introduction to building applications for mobile devices. - To code, run, and debug a variety of applications in the Mobile devices. - To understand mobile design principles and apply to the development of mobile applications identify need and opportunity in app markets. # LIST OF EXPERIMENTS - 1. To develop basic input/ output design - 2. To develop Forms in the mobile devices - 3. Connect applications to Databases in the device - 4. Develop simple multimedia mobile applications - 5. Develop Messaging systems - 6. Use the Web access for developing applications - 7. Establish Client server communication - 8. An Application development Mini project **Total Hours: 45** # **OUTCOMES:** - design user Interfaces, Connect applications to Databases, design graphical systems. - develop application for mobile devices. # LIST OF PROFESSIONAL ELECTIVE COURSES # CSBX01 NETWORK MANAGEMENT L T P C 3 0 0 3 #### **OBJECTIVES:** - To introduce the importance and meaning of Network Management. - To understand the methods and instruments for managing the Network. - To understand the role of SNMP and the protocols used by SNMP. ## MODULE I INTRODUCTION 7 Data and telecommunication Network-TCP/IP based Network-Communication Protocol and standards- Networks- Systems and services- Network Management Goals- Organization and Functions- Architecture and Management Perspectives- Review of Information Network and Technology. # MODULE II SNMP v1 NETWORK MANAGEMENT 7 Standards Models and languages- Organization and Information models-Communication and Functional Models. # MODULE III SNMP v2 AND v3 MANAGEMENT, REMOTEMONITORING 8 SNMPv2 Architecture- Structure Management information- SNMPv2 Protocol-SNMPv3 Architecture- Structure Management information- Application- User Based Security model- Remote Monitoring. # MODULE IV NETWORK MANAGEMENT TOOLS 8 System Utilities for management- Network Statistics- MIB Engineering- NMS design Network Management system-TMN and Application Management. # MODULE V NETWORK MANAGEMENT APPLICATION 8 Configuration Management- Fault Management- Performance Management-Security Management- Accounting Management- Report Management. # MODULE VI BROADBAND NETWORK MANAGEMENT 7 WAN- Wired and optical access network- Broadband home networks. **Total Hours: 45** # **TEXT BOOK:** 1. Mani Subramanian, "Network Management Principles and practice", 2nd Edition, Addison Wesley New York, 2010. # **REFERENCE:** 1. William Stallings, "SNMP, SNMPv2, SNMPv3, RMON 1 and 2", 3rd Edition, Pearson Education, 2009. # **OUTCOMES:** - apply SNMP for Managing Network. - understand the relationship of MIB on managed elements. #### **HIGH SPEED NETWORKS** L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the state-of-the-art in network protocols, architectures and applications. - To analyze existing network protocols and networks. - To develop new protocols in networking. - To understand how networking research is done. - To investigate novel ideas in the area of Networking via term-long research projects. ## MODULE I ISDN AND FRAME RELAY 7 Introduction to High Speed networks - Basics: OSI/ISO reference model - ISDN: Conceptual view - Standards - Transmission structure - BISDN - Frame Relay: Frame mode protocol architecture - Call control - LAPF - Congestion - Traffic rate management -Explicit congestion avoidance - Implicit congestion control. # MODULE II ASYNCHRONOUS TRANSFER MODE 7 Asynchronous transfer mode - ATM Protocol Architecture, ATM logical Connection, ATM Cell - ATM Service Categories - AAL - Traffic and Congestion control in ATM - Requirements - Attributes - Traffic Management Frame work, Traffic Control - ABR traffic Management - ABR rate control, RM cell formats, ABR Capacity allocations - GFR traffic management. # MODULE III CONGESTION CONTROL AND QOS IN IP NETWORKS 7 Networks: - The Need for Flow and Error Control - Link Control Mechanisms - ARQ Performance - TCP Flow Control - TCP Congestion Control - Performance of TCP Over ATM - Integrated Services Architecture - Queuing Discipline - Random Early Detection - Differentiated Services - Resource Reservation: RSVP - Multi protocol Label Switching - Real Time Transport Protocol. # MODULE IV WDM OPTICAL NETWORKS 8 Introduction to Optical Networks - Wavelength Division Multiplexing (WDM) - Introduction to broadcast and select networks - Switch architectures - Channel accessing - Wavelength routed networks - switch architectures - Routing and wavelength assignment - Virtual topology design - IP over ATM over WDM - IP over WDM. #### MODULE V HIGH SPEED LAN 8 Fast Ethernet - Switched fast Ethernet - Gigabit Ethernet - FDDI: Network configuration - Physical Interface - Frame transmission and reception. # **MODULE VI SONET** 8 SONET: Introduction - Layers - Frames - STS multiplexing - SONET networks - Virtual tributaries - Payload mappings - Packet over SONET - Generic Framing Procedure - Transport services - SONET over WDM - Traffic Grooming. **Total Hours: 45** #### **TEXT BOOKS:** - William Stallings, "ISDN and Broadband ISDN with Frame Relay and ATM", 4th Edition, Prentice-Hall of India, 2004. - 2. William Stallings, "High Speed Networks and Internets", 2nd Edition, Pearson Education, 2002. - 3. C. Siva Ram Murthy and Mohan Gurusamy, "WDM Optical Networks: Concepts, Design and Algorithms", Prentice-Hall of India, 2002. - 4. Fred Halsall, "Multimedia Communications Applications, Networks, Protocols", 1st Edition, Pearson Edition, 2001. ## **REFERENCES:** - 1. Behrouz A Forouzan, "Data Communications and Networking", 4th Edition, Tata McGraw-Hill, 2006. - 2. Rajiv Ramaswami and Kumar N. Sivarajan, "Optical Networks: A Practical Perspective", 2nd Edition, Morgan Kaufmann, 2004. #### **OUTCOMES:** Students who complete this course will be able to: develop an in-depth understanding, in
terms of architecture, protocols and applications, of major high-speed networking technologies. # B.Tech. Computer Science & Engg. - solve numerical or analytical problems pertaining to the high-speed networking technologies. - evaluate various technologies and identify the most suitable one to meet a given set of requirements for a hypothetical corporate network. - perform network design using the technologies to meet a given set of requirements. - develop necessary background to be able to manage projects involving any of the high-speed networking technologies. CSBX03 GRAPH THEORY L T P C 3 0 0 3 ## **OBJECTIVES:** - To cover the fundamental concepts of Graph Theory. - To provide in depth coverage on Famous problems in Graph Theory. - To throw light on the applications of Graph theory in computing. # MODULE I INTRODUCTION 9 Graph - Finite and Infinite graphs - Incidence and Degree - Isolated vertex, pendant vertex and Null graphs. Paths and Circuits: Isomorphism - sub-graphs - walks, paths and circuits - Connected and disconnected graphs- Euler Graphs. Operations on Graphs - More on Euler Graphs - Hamiltonian Paths and circuits - Relation of graphs and theoretical computing. #### MODULE II TREES AND FUNDAMENTAL CIRCUITS 8 Trees - Some Properties of Trees - Pendant vertices in a Tree - Distance and centers in a Tree. Spanning Trees - Fundamental circuits - Spanning trees in a weighted graph - Application in terms of data structures #### MODULE III CUT SETS AND CUT VERTICES 8 Cut sets - Properties of a cut set - all cut sets in a graph. Fundamental circuits and cut sets - Connectivity and Separability - Relevance of cut sets to computing. # **MODULE IV PLANAR GRAPHS** 6 Planar graphs - Kuratowski's two graphs - Representation of a planar graph - Planar graph application in real life # MODULE V MATRIX REPRESENTATION OF GRAPHS 8 Incidence Matrix - Circuit matrix - Fundamental circuit matrix and Rank of circuit matrix - Cut set matrix - Relationship among Af, Bf and Cf - Path matrix - Computational implication of graph representations. #### MODULE VI ALGORITHMS 6 Connectedness and Components - Spanning tree - Finding all Spanning Trees of a Graph - Cut Vertices and Separability - Directed Circuits - Case studies. **Total Hours: 45** # **REFERENCES:** - 1. Narsingh Deo, "Graph Theory with Application to Engineering and Computer Science", PHI, Reprint 2011. - 2. Arumugam.S and Dr.Ramachandran.S, "Invitation to Graph Theory", SciTech Publishing House, 2006. - 3. Harary.F, "Graph Theory", 1st Edition, Narosa Publishing House, 2011. # **OUTCOMES:** - explain relevance of graph theory in applications areas of computer science. - describe the fundamental concepts of graph theory and relate them to computer science constructs. - apply the basics of graph theory in different situations. #### MOBILE AD HOC NETWORKS L T P C 3 0 0 3 #### **OBJECTIVES:** - To have a broad overview of the state of wireless and mobile ad hoc networking. - To understand the current and emerging applications of Adhoc Networks. - To analyze physical, networking and architectural issues of mobile ad hoc networks. # MODULE I INTRODUCTION 7 Introduction - Fundamentals of wireless communication technology -Origin of Ad hoc: Packet radio networks - Technical challenges - Architecture of PRNETs - Components of packet radios - Adhoc wireless networks -Types of Ad hoc mobile communications - Types of mobile host movements - Challenges facing Ad hoc mobile networks - Ad hoc wireless internet. ## MODULE II ROUTING PROTOCOLS 7 Introduction - Issues in designing a routing protocol for Ad hoc wireless networks - Classifications of routing protocols - Table-Driven routing protocols - Destination Sequenced Distance Vector (DSDV) - Source-Initiated On-Demand approaches - Ad hoc On-Demand Distance Vector Routing (AODV) - Dynamic Source Routing (DSR) - Temporally Ordered Routing Algorithm (TORA)-Zone Routing Protocol (ZRP) . #### MODULE III MULTICASTING PROTOCOLS 7 Introduction - Issues in designing a multicast routing protocol - Operation of multicast routing protocols - An architecture reference model for multicast routing protocols -Classifications of multicast routing protocols. ## MODULE IV TRANSPORT LAYER PROTOCOLS 7 Introduction - Issues in designing a transport layer protocol for Ad hoc wireless networks - Design goals of a transport layer protocol for Ad hoc wireless networks - Classification of transport layer solutions - TCP over Ad hoc wireless networks. ## MODULE V ENERGY MANAGEMENT Introduction - Need for energy management in Ad hoc wireless networks - Classification of energy management schemes - Battery management schemes - Transmission power management schemes - System power management schemes. #### MODULE VI QOS AND SECURITY IN MANET 10 7 Introduction - Issues and challenges in providing QoS in Ad hoc wireless networks -Classifications of QoS solutions - MAC layer solutions - Network layer solutions - QoS frameworks for Ad hoc wireless networks energy management in Ad hoc wireless networks - Security in Ad hoc wireless networks - Network security requirements - Issues and challenges in security provisioning - Network security attacks - Key management - Secure routing in Ad hoc wireless networks. **Total Hours: 45** #### **TEXT BOOKS:** - 1. C.Siva Ram Murthy and B.S.Manoj, "Ad hoc Wireless Networks Architectures and protocols", 2nd Edition, Pearson Education, 2007. - 2. Charles E. Perkins," Ad hoc Networking", 1st Edition, Addison Wesley, 2000. # **REFERENCES:** - 1. C.K. Toh, "Ad Hoc Mobile Wireless Networks: Protocols and Systems", 1st Edition, Prentice-Hall of India, 2001. - 2. Stefano Basagni, Marco Conti, Silvia Giordano and Ivan stojmenovic, "Mobile Ad Hoc Networking", Wiley-IEEE press, 2004. - 3. Mohammad Ilyas, "The Handbook of Adhoc Wireless Networks", CRC press, 2002. ## **OUTCOMES:** - describe the platform architectures that are suitable for mobile adhoc networks. - explain the issues in wireless networks and how they can be addressed. - explain various security threats to ad hoc networks and describe proposed solutions. ## **WIRELESS SENSOR NETWORKS** 1 T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the basics of wireless sensor network. - To provide the various mechanisms for routing in wireless sensor network. - To find the applications where wireless sensor networks could be used. # MODULE I INTRODUCTION 6 Challenges and Constraints - Applications - Node architecture - Operating systems: Tiny OS. # MODULE II PHYSICAL LAYER 6 Basic components - Source Encoding - Channel Encoding - Modulation - Signal Propagation. # MODULE III MEDIUM ACCESS CONTROL LAYER 12 Contention free, contention based medium access - Wireless MAC protocol: Carrier Sense Multiple Access (CSMA), IEEE 802.11, IEEE 802.15.14 and Zigbee - Characteristics of MAC protocols - Contention Free MAC protocol: Low Energy Adaptive Clustering Hierarchy (LEACH), Traffic Adaptive Medium Access(TAMA), Light weight Medium Access Control(LMAC) - Contention Based MAC Protocol: SMAC, TMAC, PMAC, WiseMAC. # MODULE IV NETWORK LAYER 10 Data Centric routing: Directed Diffusion, Rumor routing - Proactive Routing: DSDV - Reactive Routing: Adhoc On Demand Distance Vector, Dynamic Source Routing - Location Based Routing. # MODULE V LOCALIZATION 6 Ranging techniques - Range based localization - Range free localization # **MODULE VI APPLICATIONS** 5 Traffic control - Health care - Pipeline monitoring **Total Hours: 45** #### **REFERENCES** - 1. Waltenegus Dargie and Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice (Wireless Communications and Mobile Computing)", 1st Edition, Wiley publications, 2010. - 2. Holger Kerl, Andreas Willig, "Protocols and Architectures for Wireless Sensor Network", John Wiley and Sons, 2011. - 3. Kazem, Sohraby, Daniel Minoli, Taieb Zanti, "Wireless Sensor Network: Technology, Protocols and Application", 1st Edition, John Wiley and Sons, 2007. - 4. N. P. Mahalik, "Sensor Networks and Configuration: Fundamentals, Standards, Platforms and Applications", Springer, 2007. - 5. B. Krishnamachari, "Networking Wireless Sensors", Cambridge University Press, 2006. # **OUTCOMES:** - know the functionalities of each layer in wireless sensor network. - know how wireless sensor network could be used in remote area applications. #### **UBIQUITOUS COMPUTING** L T P C 3 0 0 3 #### **OBJECTIVES:** - To gain knowledge on how to maintain privacy in systems that inherently needs to connect with personal devices and information. - To understand the details of how to observe people might using ubiquitous computing technology. - To focus on moving from the graphical to the ubiquitous computing user interface. - To study how to effectively process sensor data for location and context. # MODULE I INTRODUCTION TO UBIQUITOUS COMPUTING 8 Founding Contributions to Ubiquitous Computing - Tabs, Pads, and Liveboards - Context Awareness - Wearable Computing - Living Laboratories- Active Badges-Cups and Smart-Its - Modern Directions in Ubiquitous Computing - Ubicomp Systems Topics and Challenges-Creating Ubicomp Systems - Implementing Ubicomp Systems - Evaluating and Documenting Ubicomp Systems - Understanding Privacy - Technical Solutions for Ubicomp Privacy. # MODULE II UBIQUITOUS COMPUTING FIELD STUDIES 8 Three Common Types of Field Studies - Study Design - Data Analysis - Steps to a Successful Study - Running the Study - Data Collection and Analysis-From Ethnography to Design-Design-Oriented Ethnography in Practice. #### MODULE III INTERFACES FOR UBIQUITOUS COMPUTING 8 From Graphical User Interfaces to Context Data - Interaction Design - System design - design of patterns - Classes of User Interface - Input Technologies - Interface Usability Metrics. # MODULE IV LOCATION IN UBIQUITOUS COMPUTING 7 Characterizing Location Technologies-Infrastructure and Client-Based Location System-Triangulation - Fingerprinting- Error Reporting-Location Systems-Global
Positioning System-RADAR #### MODULE V CONTEXT-AWARE COMPUTING Context-Aware Computing -Feature - Context-Aware Applications - Environmental Controls- Designing and Implementing Context-Aware Applications - Design Process- Tools - Issues-Context Ambiguity. ### MODULE VI PROCESSING SEQUENTIAL SENSOR DATA Mean and Median Filters - Kalman Filter - Hidden Markov Model- Particle Filter-Presenting Performance- Continuous- Discrete- Problem Formulation-Discussion. **Total Hours: 45** 7 7 #### TEXT BOOKS: - 1. John Krumm, "Ubiquitous Computing Fundamentals", Taylor & Francis Group, CRC Press. 2009. - 2. Adam Greenfield,"Everyware: The Dawning Age of Ubiquitous Computing", 1st Edition, New Riders, 2006. # **REFERENCES:** - Williams. A, Anderson. K and Dourish. P, "Anchored mobilities: Mobile Techology and Transnational Migration", In: Proceedings of the 7th ACM Conference on Designing Interactive Systems, DIS '08,ACM Press, New York, 2008. - 2. Hodges. S, Williams. L, Berry.E, Izadi. S, Srinivasan. J, Butler. A, Smyth.G, Kapur. N and Wood. K, "SenseCam: A Retrospective Memory Aid", P. Dourish and A. Friday (Ed.), Ubicomp 2006, LNCS 4206, pp. 177-193, Springer-Verlag, Berlin, 2006. - 3. Li.Y and Landay .J," Activity Studio: Design and Testing Tools for Ubicomp Applications", 2008. - 4. Solove. D. J," Understanding Privacy", Cambridge, MA, USA: Harvard University Press, 2008. - Adrian Cheok and Yue Li, "Ubiquitous interaction with Positioning and Navigation Using a Novel Light Sensor-Based Information Transmission System, Personal and Ubiquitous Computing", 12(6):445-458, 2008. # **OUTCOMES:** - enables the students to build the software support for deploying ubiquitous computing applications. - acquire knowledge on how systems sense location, analyze and determine context. ## **ROUTING PROTOCOLS** L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand network routing basics and foundations. - To demonstrate routing in IP networks and router architectures. - To introduce into next generation routing. # MODULE I INTRODUCTION TO NETWORKING AND NETWORK ROUTING Addressing and Internet Service: An Overview-Network Routing: An Overview-IP Addressing- On Architectures- Service Architecture- Protocol Stack Architecture- Router Architecture- Network Topology Architecture. # MODULE II ROUTING ALGORITHMS: SHORTEST PATH AND WIDEST PATH 8 Bellman-Ford Algorithm and the Distance Vector Approach- Dijkstra's Algorithm- Comparison of the Bellman-Ford Algorithm and Dijkstra's Algorithm-Shortest Path Computation with Candidate Path Caching- Widest Path Computation with Candidate Path Caching- Widest Path Algorithm- K- Shortest Paths Algorithm. # MODULE III ROUTING PROTOCOLS: FRAMEWORK AND PRINCIPLES 7 IP Routing Protocol- Routing Algorithm and Routing Information- Representation and Protocol Messages- Distance Vector Routing Protocol- Link State Routing Protocol- Path Vector Routing Protocol- Link Cost. # MODULE IV IP ROUTING AND DISTANCE VECTOR PROTOCOL FAMILY 8 Routers- Networks and Routing Information: Some Basics- Static Routes-Routing Information Protocol Version 1 (RIPv1) - Routing Information Protocol Version 2 (RIPv2)- Interior Gateway Routing Protocol (IGRP)- Enhanced Interior Gateway Routing Protocol (EIGRP)- Route Redistribution. # MODULE V OSPF AND INTEGRATED IS-IS AND ROUTER ARCHITECTURE 7 OSPF: Protocol Features- OSPF Packet Format- Examples of Router LSAs and Network LSAs-Integrated IS-IS: Key Features- Similarities and Differences Between IS-IS and OSPF. Router Architectures: Functions of a Router- Types of Routers- Elements of a Router- Packet Flow- Packet Processing: Fast Path versus Slow Path- Router Architectures. MODULE VI BGP 8 BGP: A Brief Overview- Basic Terminology- BGP Operations: Message Operations- BGP Timers- BGP Configuration Initialization- Two Faces of BGP: External BGP and Internal BGP- Path Attributes- BGP Decision Process-Internal BGP Scalability- Significance of Route Flap Dampening- BGP Additional Features- Finite State Machine of a BGP Connection. **Total Hours: 45** #### **REFERENCES:** - 1. Deepankar Medhi, Kartikeyan Ramasam , "Network Routing Algorithms, Protocols, Architecture", Morgan Kauffman Series Publication, 2007. - 2. Subir Kumar Sarkar, T G Basavaraju and C Puttamadappa, "Ad Hoc Mobile Wireless Networks Principles, Protocols and Applications", 2nd Edition, Auerbach publications, 2008. - 3. Dharma Prakash Agrawal and Carlos De Morais Cordeiro, "Adhoc and Sensor Networks Theory and Applications", 2nd Edition, World Scientific publication, 2011. # **OUTCOMES:** - understand the fundamentals and requirements for packet routing in computer communication networks. - gain knowledge about the internal architecture of routers. - deal with the different routing protocols requires to be configured in real routers. #### **CLOUD COMPUTING** L T P C 3 0 0 3 #### **OBJECTIVES:** - To learn the various cloud concepts and deployment models. - To describe the landscape of different types of virtualization. - To comprehend the technical capabilities and business benefits of virtualization and cloud computing and learn how to measure those benefits. # MODULE I VIRTUALIZATION 7 Virtualization: Virtualization and cloud computing - Need of virtualization - Cost, administration, fast deployment, reduce infrastructure cost - Limitations - Types of hardware virtualization: Full virtualization - Partial virtualization - Para virtualization - Desktop virtualization: Software virtualization - Memory virtualization - Storage virtualization - Data virtualization - Network virtualization-Thin client. #### MODULE II CLOUD INTRODUCTION - ARCHITECTURAL INFLUENCES 7 Cloud Computing Overview - Origins of Cloud computing - Cloud components-Essential characteristics - On-demand self-service, Broad network access, Location independent resource pooling, Rapid elasticity - Architectural influences - High-performance computing , Utility and Enterprise grid computing, Autonomic computing , Service consolidation , Horizontal scaling, Web services, High scalability architecture. # MODULE III CLOUD SCENARIOS AND DEPLOYMENT MODEL 7 Cloud Scenarios - Benefits: Scalability, simplicity, vendors, security - limitations - application development - security concerns - privacy concern with a third party - security level of third party - security benefits - Regularity issues: Government policies - Cloud deployment model: Public clouds - Private clouds - Community clouds - Hybrid clouds - Advantages of Cloud computing. # MODULE IV CLOUD ARCHITECTURE MODELS 7 Cloud architecture: Cloud delivery model - Software as a Service (SaaS): SaaS service providers - Google App Engine, Salesforce.com and google platfrom - Benefits - Operational benefits - Economic benefits - Evaluating SaaS - Platform as a Service (PaaS): PaaS service providers - Right Scale - Salesforce.com - Rackspace - Force.com - Services and Benefits - Infrastructure as a Service (IaaS): IaaS service providers - Amazon EC2 , GoGrid - Microsoft soft implementation and support - Amazon EC service level agreement - Recent developments - Benefits. # MODULE V CLOUD COLLABORATION 8 Collaborating on Calendars, Schedules and Task Management - Exploring Online Scheduling Applications - Exploring Online Planning and Task Management - Collaborating on Event Management - Collaborating on Contact Management - Collaborating on Project Management - Collaborating on Word Processing - Collaborating on Databases - Storing and Sharing Files. #### MODULE VI CLOUD SERVICES 9 Collaborating via Web-Based Communication Tools - Evaluating Web Mail Services -Evaluating Web Conference Tools - Collaborating via Social Networks and Groupware - Collaborating via Blogs and Wikis. **Total Hours: 45** #### **TEXT BOOKS:** - 1. Anthony T. Velte, Toby J. Velte Robert Elsenpeter, "Cloud Computing a Practical Approach", 1st Edition, TATA McGraw-Hill, 2010. - 2. Michael Miller Que, "Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online", 1st Edition, Que Publishing, 2008. #### REFERENCE: 1. Haley Beard, "Cloud Computing Best Practices for Managing and Measuring Processes for On-demand Computing, Applications and Data Centers in the Cloud With SLAs", Emereo Publishing Limited, 2008. ## **OUTCOMES:** - understand cloud computing concepts and deployment of cloud models. - recognize the pros and cons of cloud computing and operational issues such as vendor selection, initial migration, onsite support, costs, and private versus public deployment. - aware of the risks associated with cloud computing, including data security and disaster recovery. CSBX09 TCP/IP L T P C 3 0 0 3 #### **OBJECTIVES:** - To examine the current architecture and operation of the Internet. - To provide a concise overview of TCP/IP with particular emphasis on the addressing and issues of TCP/IP networks. - To understand the timers that governs TCP/IP. - To analyze the TCP traces. #### MODULE I INTRODUCTION 7 Architectural principles-The Architecture and Protocols of the TCP/IP Suite-Internet Address Architecture- Expressing IP Addresses- Basic IP Address Structure- Special-Use Addresses- Allocation - Unicast Address Assignment-Attacks Involving IP Addresses-ARP-RARP. # **MODULE II INTERNET PROTOCOL - IPV4** 8 IPv4 Addressing Concepts and Issues - IP Classful Addressing - IP Subnet Addressing -Subnetting Concepts- IP Subnetting Practical Subnet Design and Address Determination Example- IP Classless Addressing: Classless Inter-Domain Routing -Supernetting. Internet Protocol Datagram Encapsulation and Formatting-IP Datagram Size, Fragmentation and Reassembly - IP Routing and Multicasting. ## MODULE III INTERNET PROTOCOL - IPV6 AND SUPPORT 8 IPv6 Overview, Changes and Transition-IPv6 Addressing-IPv6 Datagram Encapsulation and Formatting- IPv6 Datagram Size, Fragmentation, Reassembly, and Routing-ICMP-IPv6 Neighbor Discovery Protocol. # MODULE IV TRANSMISSION CONTROL PROTOCOL 7 Introduction to TCP - TCP header and
encapsulation-connection establishment and termination-TCP options-path MTU discovery with TCP-TCP state transitions. -Timeout and Retransmission- Setting the Retransmission Timeout-Timer-Based Retransmission- Fast Retransmit- Retransmission with Selective Acknowledgments - Spurious Timeouts and Retransmissions - Packet Reordering and Duplication -Destination Metrics- Repacketization -Attacks Involving TCP Retransmission. # MODULE V TCP WINDOW MANAGEMENT AND CONGESTION CONTROL 8 Interactive Communication -Delayed Acknowledgments -Nagle Algorithm - Flow Control and Window management - Urgent Mechanism - Attacks Involving Window Management -TCP Congestion Control -The Classic Algorithms-Evolution of the Standard Algorithms -Handling Spurious RTOs-the Eifel Response Algorithm - Sharing Congestion State - TCP Friendliness TCP in High-Speed Environments - Delay-Based Congestion Control- Active Queue Management and ECN- Attacks Involving TCP Congestion Control #### MODULE VI TCP TIMERS 7 TCP Persist Timer - Silly Window Syndrome - Keep alive Timer - Window Scale Option - Analyzing TCP/IP traffic - Packet Analysis - TCP/IP Diagnostic Tools and Utilities. **Total Hours: 45** # **TEXT BOOKS:** - 1. Kevin R.Fall, W.Richard Stevens, "TCP/IP Illustrated, Volume 1: The Protocols, 2nd Edition, Pearson Education, 2011. - 2. Charles M. Kozierok "The TCP/IP Guide -A Comprehensive, Illustrated Internet Protocols Reference", 2005. ## **REFERENCES:** - 1. Douglas E. Comer, "Internetworking with TCP/IP Principles, Protocols, and Architecture", 5th edition, Volume-1, Prentice Hall, 2006. - 2. Adrian Farrel, "The Internet and its Protocols- A Comparative Approach", 1st Edition, Morgan Kaufmann, 2004. - 3. W.Richard Stevens "TCP/IP Illustrated, The Protocols", Volume I, 2nd Edition, Pearson Education, 2012. - 4. Behrouz A.Forouzan, "TCP/IP Protocol Suite", 3rd Edition, Tata McGraw Hill-2006 - 5. Pete Loshin "IPv6 Theory, Protocol and Practice", 2nd Edition, Morgon Kaufmann, December, 2003. # **OUTCOMES:** - have an overview of the TCP/IP protocol suite. - acquire knowledge of the IP addressing and sub netting concepts. - detailed description of internetworking including its motivation, history, current status, and possible future directions. - understand the major internetworking protocols including: ARP, RARP, IP, ICMP and TCP. # CSBX10 EMBEDDED SYSTEMS L T P C 3 0 0 3 #### **OBJECTIVES:** - To provide basic understanding about embedded systems. - To understand the various building components of an embedded system. - To expose to the embedded programming concepts and study the procedures for development and testing. ## MODULE I INTRODUCTION TO EMBEDDED SYSTEMS 6 Definitions - Embedded hardware components - Embedded Software - System on Chip(SoC) - VLSI Circuits - Fundamentals of Embedded System Design. # MODULE II DEVICES, COMMUNICATION BUSES AND PROTOCOLS 8 I/O Devices - Device I/O Types and Examples - Synchronous Communication-Iso-Synchronous Communication - Asynchronous Communication - Serial Bus Communication Protocols - Parallel Bus Communication Protocols. #### MODULE III DEVELOPMENT AND TESTING 8 Embedded Software Development Process - Development Tools - Hardware and Software Design Issues - Techniques and Tools for Testing, Simulation and Debugging - Design Examples and Case Studies of Program Modeling and Programming with RTOS. # MODULE IV PERFORMANCE ANALYSIS OF EMBEDDED SYSTEMS 7 Real Time Performance Analysis - Applications of Queuing Theory - Input/ Output Performance - Analysis of Memory Requirements - Metrics - Fault Tolerance - Inherent Uncertainly - Performance optimization Techniques. # MODULE V REAL-TIME OPERATING SYSTEMS 8 Tasks and Task States - Tasks and Data - Semaphores and Shared Data - Message Queues - Mailboxes and Pipes - Timer Functions - Events - Memory Management - Interrupt Routines in an RTOS Environment. #### MODULE VI BASIC DESIGN USING A REAL-TIME OPERATING SYSTEM 8 Principles, Semaphores and Queues - Hard Real- Time Scheduling Considerations - Saving Memory and Power- An example RTOS like uC-OS (Open Source) - Embedded Software Development Tools: Host and Target machines - Linker/Locators for Embedded Software -Getting Embedded Software into the Target System - Debugging Techniques: Testing on Host Machine- Using Laboratory Tools- An Example System. **Total Hours: 45** #### **TEXT BOOKS:** - 1. Phillip A. Laplante, Seppo J. Ovaska, "Real-Time Systems Design and Analysis: Tools for the Practitioner", 4th Edition, Wiley-IEEE Press, 2011. - 2. Raj Kamal, "Embedded Systems: Architecture, Programming and Design", 2nd Edition, McGraw-Hill Education (India), 2009. - 3. Kai Qian, David Den Haring, Li Cao, "Embedded Software Development with C", Springer, 2009. #### **REFERENCES:** - Tero Karvinen, Kimmo Karvinen, "Make: Arduino Bots and Gadgets: Six Embedded Projects with Open Source Hardware and Software", 1st Edition, Maker Media Inc, 2011. - 2. James W. Grenning, Test Driven Development for Embedded C", 1st Edition, Pragmatic Bookshelf, 2011. - 3. Arnold S. Berger, "Embedded Systems Design: An Introduction to Processes, Tools and Techniques", CMP Books, 2002. - 4. Wayne Wolf, "Computers as Components, Principles of Embedded Computing System Design", 2nd Edition, Elsevier, 2005. #### **OUTCOMES:** - possess the basic understanding of embedded system and its building blocks. - understand the embedded programming concepts. - analyze a real time scenario, design an embedded system and analyze its performance. #### HACKING TECHNIQUES L T P C 3 0 0 3 #### **OBJECTIVES:** - To provide an overview of Web application environments and understand the basics of client and server side authentication techniques. - To give a detailed account of various types of vulnerabilities and their prevention. - To discuss about security tools and testing applications for vulnerability and authentication flaws. # MODULE I INTRODUCTION TO HACKING 7 Introduction to Hacking-Types of Hacking-Hacking windows - Network hacking-Web hacking - Password hacking. #### MODULE II WEB APPLICATION 7 Problem factors - Defense mechanisms - Handling user access - User input-Handling attackers - Managing the application - Web application technologies-The HTTP protocol - Web functionality - Encoding schemes. ## MODULE III VARIOUS ATTACKING MECHANISM 8 Mapping the application - Bypassing client side control -- Attacking authentication -Attacking session management -- Attacking access control - Attacking path traversal -Attacking application logic - Attacking other users - XSS - Redirection attacks - HTTP header injection - Frame injection- Request forgery- JSON hijacking - Session fixation - Local privacy attacks -Advanced exploiting techniques -Its prevention. # MODULE IV VULNERABILITIES 8 Burp proxy - Automating bespoke attacks - Uses for bespoke automation - Enumerating valid identifier - Fuzzing common vulnerabilities, Its prevention-Exploiting information disclosure - Exploiting error message, Its prevention - Attacking compiled application - Buffered overflow attacks - Integer and format string vulnerabilities, Its prevention - Architectural attacks - Tiered architecture - Shared hosting and Application service providers, Its prevention - Server attack - Vulnerable application configuration and Software - Source code vulnerabilities - Different languages, Its prevention. #### MODULE V HACKERS METHODOLOGY Hacker's toolkit - Web browsers - Integrated testing suites - Vulnerability scanners -Nikto-hydra-custom Scripts - Hacker's methodology - Mapping application content -Analyzing application-testing - Client side controls - Authentication mechanism - Session management mechanism - Access controls - Input based vulnerabilities- Logic flaws- Sharing hosting vulnerabilities- Web server vulnerabilities- Miscellaneous checks. #### MODULE VI CASE STUDY 7 8 System hacking- Case study: DNS High Jinx- Pwning the internet-Hacking windows-Hacking unix-Infrastructure hacking- Case study: Read It and WEP-Wireless hacking- Application and data hacking- Case study: Session Riding. **Total Hours: 45** # **TEXTBOOKS:** - 1. Dafydd Stuttard, Marcus Pinto,"The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws", 2nd Edition, 2011. - 2. Stuart McClure, Joel Scambray, George Kurtz,"Hacking Exposed 6 -Network Security Secrets and Solutions", 6th Edition, Tata McGraw-hill edition, 2009. - 3. Kenneth C.Brancik, "Insider Computer Fraud", 1st Edition, Auerbach Publications Taylor & Francis Group,2008. ## **OUTCOMES:** - describe the way web applications work, and list the avenues of vulnerability. - explain authentication mechanisms used to guard against the vulnerabilities. - test applications for vulnerabilities. - develop authentication mechanisms to protect applications from attackers. - give a detailed overview of the various hacking techniques through case studies. #### **BIO INSPIRED COMPUTING** L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the techniques associated with biologically inspired neural networks, genetic algorithms and neuromorphic systems. - To acquire knowledge on how complex and functional high-level phenomena can emerge from low-level interactions. - To study how computational processes can be derived from natural models. #### MODULE I LIFE AND INFORMATION 8 What is Life - The Logical Mechanisms of Life - What is so cool about computation - Universal Computation and Computability - Simulations and Realizations-Imitation of Life - Computational Beauty of Nature (fractals, L-systems, chaos) Bio-inspired computing -Natural computing-Biology through the lens of computer science. # MODULE II COMPLEX SYSTEMS AND ARTIFICIAL LIFE 8 Complex Networks - Controllability of complex networks - Self-Organization and Emergent Complex Behavior - Cellular Automata - Boolean Networks - Development and Morphogenesis-Open-ended evolution & results. # MODULE III EVOLUTIONARY ALGORITHMS 8 Evolution and Adaptation - Von Neumann and
Natural Selection -Systems and Biocomplexity - Self-Similarity and L-Systems - Modeling Evolution: Evolutionary Computation. # MODULE IV COLLECTIVE BEHAVIOR AND SWARM INTELLIGENCE 7 Social Insects, Stigmergy and Swarm Intelligence - Competition and Cooperation - Communication and Multi-Agent simulation - Turing's Tape, Self-Reproduction Collective Intelligence. # MODULE V IMMUNOCOMPUTING 7 A distributed design for computational intelligence -Engineering Application - Dynamical Systems and Attractor Behavior - Cellular Automata and the Edge of Chaos - The Adaptive Immune System and Artificial Immune Systems. ## MODULE VI GENETIC ALGORITHMS Genetic Algorithms - Genetic Programming-Information transmission: From emergent computation to the gene - Ant Clustering Algorithm - Temporal Networks. **Total Hours: 45** 7 #### **TEXT BOOKS:** - 1. Nunes de Castro, Leandro, "Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications", Chapman & Hall, 2006. - 2. Mitchell.M," Complexity: A Guided Tour", Oxford University Press, 2009. # **REFERENCES:** - 1. Nunes de Castro, Leandro and Fernando J. Von Zuben, "Recent Developments in Biologically Inspired Computing", MIT Press, 2005. - 2. Forbes. N, "Imitation of Life: How Biology is Inspiring Computing", 1st Edition, MIT Press, 2004. #### **OUTCOMES:** - explain how biological systems exploit natural processes. - apply nature-inspired evolutionary computation, genetic algorithm techniques for solving optimization problems. #### CSBX13 CYBER FORENSICS L T P C 3 0 0 3 #### **OBJECTIVES:** - To introduce the different types of cyber crimes. - To introduce the policies and procedures to investigate cyber crime. - To introduce some of the security threats and hacking techniques. ### MODULE I INTRODUCTION 7 Main frame systems, Desktop systems - Multiprocessor systems - Distributed systems - Clustered systems - Real time systems - Hand held Systems. Important Technical Terminologies-Weapons of cyber crime -Types of cyber crime -Credit card and cyber crime-Web hacking. #### MODULE II COMPUTER AND DIGITAL FORENSICS 8 Computer Forensics and Digital Detective Work-Cell Phone Forensics - Email and Webmail Forensics-Legal Ethical and Testimony Topics-Ethical and Professional Responsibility in Testimony-Computer Forensics and Digital Detective Work. #### MODULE III EVIDENCE 8 Preparing for evidence collection and preservation- Tools, Environments, Equipment and Certifications, Policies and Procedures-Data, PDA and cell phone forensics. # MODULE IV FORENSICS EXAMINATION AND HACKING TECHNIQUES 9 Forensics Examination of computers, digital and electronic media - Operating Systems and data transmission basics for digital investigations-Overview of security threats-Hacking Techniques-Password Cracking-Insecure Network Connection-Email Security-PGP and SMIME. # MODULE V DETECTING INTRUSIONS MALWARE AND LEGAL ETHICAL 7 Detecting Intrusions Malware and Fraud-Tracking down those Who Intend to do harm-Fraud and Forensics Accounting Investigation-Legal Ethical and Testimony Topics-Ethical and Professional Responsibility in Testimony. # MODULE VI CRYPTOGRAPHY AND CYBER LAWS 6 Cryptography -Futuristic crime- Cyber laws of different countries- Social Networking site bane or boon- Search and seizure. **Total Hours: 45** ## **TEXT BOOKS:** - Sujit Mukharjee, Sitanchu Mohan Ray, Bivas, Chittarjee, "Your Ultimate Cyber Crime Protection Guide", Power Publishers, 2012. - 2. Reynaldo Anzaldua,Linda Volonino,Jana Godwin,"Computer Forensics: Principles and Practices", 1st Edition, Textbook Solution,2007. ## **REFERENCE:** Keith John Jones, Richard Bejtlich, Curtis W. Rose, "Real Digital Forensics. Mit DVD: Computer Security and Incident Response", 7th Edition, Addison Wesley Professional, 2006. # **OUTCOMES:** - understand concept of the digital and cyber forensics. - get the knowledge on how to secure their email, password, mobile and network. ## CSBX14 MOBILE COMPUTING TECHNOLOGIES L T P C 3 0 0 3 #### **OBJECTIVES:** - To serves as an advanced element of learning in the field of wireless communication. - To expose the students to the concepts of wireless devices and mobile computing. # MODULE I MOBILE COMMUNICATIONS 6 Introduction to Mobile Communications and Computing: Mobile Computing (MC) - Introduction to MC- Novel applications- Limitations and architecture. GSM: Mobile services- System architecture- Radio interface- Protocols-Localization and calling- Handover- security and new data services. ## MODULE II MEDIUM ACCESS CONTROL 8 Motivation for a specialized MAC (Hidden and exposed terminals, near and far terminals)- SDMA- FDMA- TDMA- CDMA. ## MODULE III MOBILE NETWORK LAYER 8 Mobile IP (Goals- assumptions, entities and terminology, IP packet delivery, agent advertisement and discovery, registration, tunneling and encapsulation, optimizations) - Dynamic Host Configuration Protocol (DHCP). # MODULE IV MOBILE TRANSPORT LAYER 8 Traditional TCP- Indirect TCP- Snooping TCP- Mobile TCP- Fast retransmit/ fast recovery- Transmission /time-out freezing- Selective retransmission-Transaction oriented TCP. ## MODULE V DATABASE ISSUES 9 Hoarding techniques- Caching invalidation mechanisms- client server computing with adaptation- Power-aware and context-aware computing-Transactional models- Query processing- Recovery and quality of service issues. Data Dissemination: Communications asymmetry- Classification of new data delivery mechanisms- Push-based mechanisms- Pull-based mechanisms- Hybrid mechanisms- Selective tuning (indexing) techniques. ## **MODULE VI MANET** 6 Mobile Ad hoc Networks (MANETs): Overview- Properties of a MANET-Spectrum of MANET applications- Routing and various routing algorithms-Security in MANETs. Wireless Application Protocol-WAP. (Introduction, protocol architecture, and treatment of protocols of all layers)- Bluetooth (User scenarios, physical layer, MAC layer, networking, security, link management) and J2ME. **Total Hours: 45** #### **TEXT BOOKS:** - 1. Jochen Schiller, "Mobile Communications", 2nd Edition, Addison-Wesley, 2008. - 2. Stojmenovic and Cacute, "Handbook of Wireless Networks and Mobile Computing", Wiley Publications, 2008. ## **REFERENCES:** - 1. Reza Behravanfar, "Mobile Computing Principles: Designing and Developing Mobile Applications with UML and XML", Cambridge University Press, 2004. - 2. Adelstein, Frank, Gupta, Sandeep KS, Richard III, Golden, Schwiebert, Loren, "Fundamentals of Mobile and Pervasive Computing", McGraw-Hill professional, 2007. - 3. Hansmann, Merk, Nicklous, Stober, "Principles of Mobile Computing", 2nd Edition, Springer, 2007. ## **OUTCOMES:** - understand the concept of mobile computing and architecture of mobile communication. - apply the concepts of mobile communications to the transactions and transaction management. - apply the concepts of mobile computing and conventional wired network and simulate it on the simulator. #### CSBX15 ## **DISTRIBUTED COMPUTING** L T P C 3 0 0 3 ## **OBJECTIVES:** - To enable the student to build concurrent and distributed applications. - To expose students to the technologies of contemporary distributed middleware, including distributed objects and messaging systems. - To give a clear understanding of technology in terms of the underlying fundamental principles. ## MODULE I INTRODUCTION 8 Distributed operating System - Goals -- Hardware concepts-Software concepts-Design issues-Layered protocols-Asynchronous transfer mode networks-Client-Server model. ## MODULE II REMOTE PROCEDURE CALL 7 Remote Procedure calls - Basic operations- Parameter passing Semantics - Dynamic binding- RPC Semantics - Implementation issues - Exception handling - Security Distributed shared Memory - Introduction - Consistency Models -Page based distributed shared memory-Shared-variable distributed shared memory -Object based distributed shared memory. # MODULE III SYNCHRONIZATION 8 Synchronization - Introduction - Clock Synchronization - Event ordering - Mutual Exclusion - Deadlock - Election Algorithms-Atomic transaction. ## MODULE IV RESOURCE MANAGEMENT 7 Resource Management - Introduction - Features - Task Assignment approach-Load Balancing Approach - Load -Sharing Approach Process Management Introduction - Process Migration - Threads. ## MODULE V DISTRIBUTED FILE SYSTEM AND NAMING 8 Distributed File Systems - Introduction - Features - File Models - Accessing Models - Sharing Semantics - Caching Schemes - File Replication - Fault Tolerance - Atomic Transactions - Design Principles Naming - Introduction-Features - Terminologies - Concepts. ## MODULE VI SECURITY AND CASESTUDIES Potential attacks - Cryptography - Authentication - Access control - Digital signatures - design principles-Amoeba - Mach - CHORUS. **Total Hours: 45** 7 ## **TEXT BOOKS:** - 1. Andrew S. Tanenbaum, "Distributed Operating Systems", 4th Edition, Pearson Education, 2013. - 2. George Coulouris, Jean Dollimore, TimKindberg and Gordon Blair,"Distributed Systems Concepts and Design", 5th Edition, Addison Wesley Publications, 2011. ## **REFERENCES:** - 1. Andrew S. Tanenbaum & Maarten van Steen, "Distributed systems: principles and paradigms", 2nd Edition, Pearson Prentice Hall, 2007. - 2. Mugesh Singhal, Niranjan & G Shivaratri, "Advanced Concepts in Operating Systems", Tata McGraw Hill Publications, 2001. ## **OUTCOMES:** - apply problem solving (analysis, design, and development) skills to distributed applications. - integrate OS and programming language concepts to solve/implement the (distributed) components of the systems. - develop suites of networking protocols for implementing the communicating components. # CSBX16 COMPLEX NETWORKS L T P C 3 0 0 3 #### **OBJECTIVES:** - To learn basic concepts of graph theory - To have an idea about different models and structure of complex networks - To study various applications of complex networks # MODULE I INTRODUCTION 5 Introduction: Graph theory - scale free processes and fractal structures. # MODULE II
MODELS OF COMPLEX NETWORKS 8 Models of complex networks - Adjacency relations in networks - Metric and topological structure of the network. ## MODULE III FRAGMENTS OF COMPLEX NETWORKS 8 Fragments in complex networks - Accounting for all parts of sub graphs - Communicability functions in networks - Centrality measures - Global network invariants. # **MODULE IV NETWORK CLASSES** 8 Expansion and network classes - Community structure of networks - Network bipartivity - Random models of networks. # MODULE V OPTIMIZATION 8 Optimization of network structure - Thermodynamic models on networks - Searching in networks - Biological networks and network motifs. # MODULE VI GENETIC NETWORKS 8 Genetic networks - Protein residue networks - Protein - Protein interaction networks - Structure of reaction networks. **Total Hours: 45** ## **REFERENCES:** Reuven Cohen ,Shlomo Havlin, "Complex Networks: Structure, Robustness and Function", Cambridge University Press, 2010. # B.Tech. Computer Science & Engg. - 2. Ernesto Estrada ,"The Structure of Complex Networks: Theory and Applications", 1st Edition, Oxford University Press, 2011. - 3. Maarten van Steen, "Graph Theory and Complex Networks: An Introduction", Maarten Van Steen Publishers, 2010. # **OUTCOMES:** - understand the basic concepts of complex networks. - define various models and optimization procedure for networks. CSBX17 MOBILE COMMERCE L T P C 3 0 0 3 #### **OBJECTIVES:** - To introduce participants to the new technologies, applications, services and business models of M-Commerce. - To understand the models of M- Commerce applications. #### MODULE I M-COMMERCE 5 8 8 Introduction to m-commerce: Emerging applications - Different players in m-commerce - M-commerce life cycle Mobile financial services - Mobile entertainment services and proactive service management. ## MODULE II MANAGEMENT OF MOBILE COMMERCE SERVICES 8 Content development and distribution to hand-held devices - Content caching, pricing of mobile commerce services. ## MODULE III EMERGING ISSUES IN MOBILE COMMERCE The role of emerging wireless LANs and 3G/4G wireless networks - Personalized content management - Implementation challenges in m-commerce - Futuristic m-commerce services. ## MODULE IV KNOWLEDGE MANAGEMENT IN A MOBILE COMPUTING 8 Knowledge Management in a mobile computing context-Query formation and Information retrievel-Knowledge discovery in mobile business data-Modelling the dynamics of mobile data services markets. ## MODULE V MOBILE MESSAGE AND DATA SERVICES Modelling the dynamics of mobile data services-Short message service and applications-Multimedia message peer-Mobile banking-Agent based secured E-Payment system. # MODULE VI QUALITY OF SERVICE IN MOBILE APPLICATION 8 Quality of service oriented medium access control for ATM and mobile applications. Total Hours: 45 # **REFERENCES:** - 1. Brian Mennecke and Troy Strader, "Mobile Commerce: Technology, Theory an Applications", Idea Group, 2003. - 2. Nansi Shi, "Mobile Commerce Applications", IGI Global, 2004. ## **OUTCOMES:** - understand the M-commerce concepts and technologies. - learn the emerging models for developing m-commerce applications. - develop an understanding of the different organizational roles during the development of m-commerce initiatives. # CSBX18 SERVICE ORIENTED ARCHITECTURE L T P C 3 0 0 3 ## **OBJECTIVES:** - To understand SOA, Service-Orientation and Web Services. - To learn how to build SOA with Web Services. - To design service oriented design process. ## MODULE I INTRODUCTION TO SOA 6 Introduction - Fundamental SOA - Contemporary SOA - Misperceptions about SOA - Benefits of SOA - Pitfalls of SOA - Evolution of SOA - Web Services & Primitive SOA. ## MODULE II ACTIVITY MANAGEMENT & COMPOSITION 8 Service Classification - Business Process Management - SOA & Organization-Message Exchange Patterns - Service Life Cycle - Service Activity - Coordination - Business Activities - Orchestration - SOA and Performance - Reusability, Composability, Modularity. ## MODULE III MESSAGING AND SECURITY 8 SOA and Security - Addressing - Reliable Messaging - Correlation - Policies - Metadata Exchange - Security - Notification and Eventing. ## MODULE IV PRINCIPLES OF SERVICE ORIENTATION 8 Anatomy of SOA - Principles of SO - Interrelation - SO and Object Orientation - Service Layers - Configuration Scenarios - SOA Delivery Strategies. # MODULE V SERVICE ORIENTED DESIGN 8 Introduction to SO Design - XML Schema Language Basics - WSDL - SOAP-Service Interface Design Tools - Composing SOA - Core SOA Standards - Service Design Guidelines - WS-BPEL Language - WS-Coordination overview-Business Process Design . ## MODULE VI WS EXTENSIONS & SOA PLATFORMS 7 WS-Addressing Language Basics - WS-Reliable Messaging Language - WS-Policy Language - WS-Metadata Language - WS-Security Language - SOA Platform - Case Study. **Total Hours: 45** ## **REFERENCES:** - Thomas Erl, "Service-Oriented Architecture: Concepts, Technology & Design", Pearson Education, 2008. - 2. Nicolai M. Josuttis, "SOA in Practice: The Art of Distributed System Design", O'Reilly Publications, 2009. - 3. Thomas Erl, "SOA Principles of Service Design", Prentice Hall, 2008. - 4. Thomas Erl, "SOA Design Patterns", 2nd Edition, Prentice Hall, 2009. - 5. Eric Newcomer, Greg Lomow, "Understanding Soa with Web Services", 2nd Edition, Pearson Education, 2009. - 6. Paul. C. Brown, "Implementing SOA Total Architecture in Practice", Pearson Education, 2009. - 7. Shankar Kambhampaty, "Service Oriented Architecture for Enterprise Applications", 1st Edition, Wiley India Private Limited, 2008. # **OUTCOMES:** - service Orientation principles and business modeling. - create design standards for SOA based solutions. - web service technology within the context of SOA. CSBX19 WEB ENGINEERING L T P C 3 0 0 3 #### **OBJECTIVES:** - To provide students with conceptual and practical knowledge, and skills required to develop web applications and web services. - To introduce a structured software engineering methodology to Web development projects. - To addresses the concepts, methods, technologies, and tools for developing Web applications. #### MODULE I INTRODUCTION TO WEB ENGINEERING 8 The Web - Web Applications - Web Engineering - Agility - Web E- Framework-Principles for framework adaption - Components of Web Engineering - Web Engineering Process - Communication in Web E - Framework. # MODULE II PLANNING, MODELLING AND ANALYSIS OF WEB APPS 8 Understanding Scope - Refining Framework Activities - Building a Web E-Team- Risk Management-Schedule Development-Quality and Change Management - Modeling Activity-Analysis Modeling of Web Apps. ## MODULE III WEB APPLICATION DESIGN 8 Design Goals - Design Process - Interaction Design - Principles and Guidelines-Design Steps - Design Issues - Aesthetics - Information Design - Structuring Information Space - Functional Design. ## MODULE IV DEVELOPMENT AND DEPLOYMENT 7 Development in Web E-Process - Development Principles - Development Concepts - Deployment of Web Apps - Design Patterns - Web App Patterns - Pattern Repositories - Case S tudy. # MODULE V TESTING AND CHANGE MANAGEMENT 7 Testing Concepts and Process - Content Testing - UI and Usability Testing - Compatibility Testing - Component Level Testing - Navigation Testing - Configuration Testing - Security and Performance Testing - Change Management. ## MODULE VI TECHNOLOGIES AND TOOLS Technological Issues - Development tools and technologies - Evolving Web Technologies - Web 2.0 - HTML5- LAMP- Ruby-Security of Web Apps - Future of Web Apps. **Total Hours: 45** 7 #### **TEXT BOOKS:** - 1. Roger Pressman and David Lowe, "Web Engineering: A Practitioner's Approach", McGraw-Hill, 2009. - James Governor, Dion Hinchcliffe, and Duane Nickull, "Web 2.0 Architectures: What Entrepreneurs and Information Architects Need to Know", 1st Edition, O'Reilly, 2009. ## **REFERENCES:** - 1. H. M. Deitel, P. J. Deitel, and A. B. Goldberg, Internet and World Wide Web How to Program, 4th Edition, Pearson Education Inc., 2008. - 2. H. M. Deitel, et al., XML How to Program, 1st Edition, Pearson Education Inc., 2001. - G. Kappel, B. Pröll, S. Reich, and W. Retschitzegger," Web Engineering The Discipline of Systematic Development of Web Applications", John Wiley & Sons, 2006. ## **OUTCOMES:** - apply the concepts, principles, and methods of Web engineering to Web applications development. - perform analysis modeling and design modeling for web applications. - develop user-interfaces for web applications. #### CSBX20 ## INTERNET TECHNOLOGIES L T P C 3 0 0 3 ## **OBJECTIVES:** - To understand the basics of Internet technology. - To understand and design web pages using HTML and CSS. - To design dynamic web pages and develop server side programs. - To provide exposure to the latest web development tools. ## MODULE I INTRODUCTION TO INTERNET 6 Internet Standards - World Wide Web - Client-Side Vs Server Side - Web Basics - Web 1.0 - Web 2.0 - Web 3.0 - Internet of Things. ## MODULE II HTML 5 AND CSS3 9 HTML5 Basic - Headings - Linking - Images - Lists - Table - Forms- Meta Elements - Semantic tags - Page Structure Elements - CSS3 Rules - Types of Style Sheets - Positioning Elements - Box Models - Text Flow. ## MODULE III SCRIPTING LANGUAGES 8 Basics - Dialogs - Memory Concepts - Arithmetic - Control Structures - Functions - Arrays - Objects - Simple Web Applications - Event Handling #### MODULE IV SERVER SIDE PROGRAMMING 7 Servlets - Deployment of Simple Servlets - Web Server (Java Web Server / Tomcat / WebLogic) - HTTP GET - HTTP POST - Session Tracking - Cookies-JDBC - N-Tier Applications. # MODULE V XML FUNDAMENTALS 8 XML Basics - Structuring Data - XML Namespaces - Document Type Definitions (DTDs) - W3C XML Schema Documents - XML Vocabularies - Extensible Style sheet Language and XSLT -Document Object Model (DOM). ## MODULE VI DEVELOPMENT TOOLS AND TECHNOLOGIES 7 Ajax - JSON - LAMP - SQL - LINQ - MySQL Basics - Perl Basics - Python
Basics - PHP Basics. **Total Hours: 45** ## **TEXT BOOKS:** - 1. Paul Deitel, Harvey Deitel and Abbey Deite, "Internet & World Wide Web: How to Program", 5th Edition, Prentice Hal, 2011. - 2. Jennifer Niederst Robbins, "Learning Web Design: A Beginner's Guide to HTML, CSS, JavaScript, and Web Graphics", 4th Edition, O'Reilly Media, 2012. ## **REFERENCE:** 1. Robin Nixon, "Learning PHP, MySQL, JavaScript, and CSS: A Step-by-Step Guide to Creating Dynamic Websites", 2nd Edition, O'Reilly Media, 2012. ## **OUTCOMES:** - possess fundamental understanding of Internet technology. - design and develop web sites and application programs with necessary tools and techniques. CSBX21 GAME THEORY L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the basic concepts of Gaming and related techniques. - To gain ability for designing and developing gaming applications. - To study gaming architecture, related languages and tools. - To learn audio-visual design, product development, IPR and product marketing. # MODULE I INTRODUCTION TO GAMING 7 History of Video games - Games and Society - Game Goals - Game Genres - Gaming Platforms - Time Intervals - Player Modes - Motivations -Rewards - Resolution. ## MODULE II GAME DESIGN 7 Game Design - Game Writing - Narrative Theory - Story and Character Development - Game play - Creating the Game World - Level Design - Human-Computer Interface design. # MODULE III GAME PROGRAMMING :LANGUAGES AND ARCHITECTURE 8 8 Teams and Processes - C++ - Java - Scripting Languages - Game Programming Fundamentals - Game Architecture - Memory and I/O Systems-Debugging Games - Tools for Development and Testing. # MODULE IV GRAPHICS, ANIMATION, AI, NETWORK PROGRAMMING 8 Graphics - Character Animation - Artificial Intelligence: Agents, Architecture and techniques -Path finding - Collisions Detection and Resolution - Mathematical Concepts -Real-Time Game Physics - Networking and Multiplayer Games. ## MODULE V AUDIO VISUAL DESIGN AND PRODUCTION Visual Design - 3D Modeling - 3D Environments -2D Textures and Texture Mapping - Special Effects - Animation - Lighting - Cinematography- Audio Design and Production - Audio Programming. ## MODULE VI GAME PRODUCTION AND BUSINESS OF GAMES Game production- Project management -Game industry roles -Economcis - Publisher-Developer relationship- Marketing - Intellectual Property rights - Content regulation. **Total Hours: 45** 7 ## **TEXT BOOKS:** - 1. Jeannie Novak, "Game Development Essentials An Introduction", 3rd Edition, Delmar Cengage Learning, 2011. - 2. Steve Rabin, "Introduction to Game Development", 2nd Edition, Charles River Media, 2010. ## **REFERENCES:** - 1. Mat Buckland, "Programming Game AI by Example", 1st Edition, Wordware Publishing, Inc., 2005. - 2. Tracy Fullerton, Morgan-Kaufmann, "Game Design Workshop: A Playcentric Approach to Creating Innovative Games", 2nd Edition, Elsevier Morgan Kaufmann, 2008. # **OUTCOMES:** - demonstrate skills required for game development processes, practices and use of software tools. - demonstrate an ability to critically review existing computer games and apply that analysis to development of new games. - apply the gaming principles, architecture, use of tools to design and develop gaming applications. ## CSBX22 INTRODUCTION TO BIG DATA L T P C 3 0 0 3 #### **OBJECTIVES:** - This course brings together several key technologies used in manipulating, storing, and analyzing big data. - To make the student understand details of Hadoop. - To introduce tools that provide SQL-like access to unstructured data. ## MODULE I BIG DATA FUNDAMENTALS 6 Big Data and its Importance - Four V's of Big Data - Drivers for Big Data - Introduction to Big Data Analytics - Big Data Analytics applications. ## MODULE II BIG DATA TECHNOLOGIES 8 Hadoop's Parallel World - Data Discovery - Open source technology for Big Data Analytics - Cloud and Big Data - Predictive Analytics - Crowd Sourcing Analytics - Inter- and Trans-Firewall Analytics. ## MODULE III BIG DATA PROCESSING 7 Data Store Integration - Mapping data to the programming framework - Connecting and extracting data from storage - Transforming data for processing- Subdividing Data. ## MODULE IV MAPREDUCE FUNDAMENTALS 9 The Building Blocks of Hadoop MapReduce - Employing Hadoop MapReduce-Creating the components of Hadoop MapReduce jobs - Distributing data processing across server farms -Executing Hadoop MapReduce jobs - Monitoring the progress of job flows - Distinguishing Hadoop daemons - Investigating the Hadoop Distributed File System Selecting appropriate execution modes: local, pseudo-distributed, fully distributed. ## MODULE V ADVANCED ANALYTICS 7 Real-Time Architecture - Orchestration and Synthesis Using Analytics Engines-Discovery using Data at Rest - Implementation of Big Data Analytics - Big Data Convergence - Analytics Business Maturity Model. ## MODULE VI TOOLS AND TECHNIQUES 8 Fundamentals of Pig - Fundamentals of HBase - Fundamentals of Hive -Introduction to NoSQL - Introduction to Mahout. ## REFERENCES: - Michael Minelli, Michehe Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business", 1st Edition, Wiley CIO Series, 2013. - 2. Arvind Sathi, "Big Data Analytics: Disruptive Technologies for Changing the Game", 1st Edition, IBM Corporation, 2012. - Tom White, "Hadoop: The Definitive Guide", 3rd Edition, O'Reilly, 2012. 3. - 4. Kevin Roebuck, "Storing and managing Big Data - NoSql, Hadoop and more: High-Impact Strategies - What You Need to Know", Tebbo Publishers, 2011. - 5. Bill Franks, "Taming The Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", 1st Edition, Wiley and SAS Business Series, 2012. # **OUTCOMES:** - categorize and Summarize Big Data and its importance. - manage Big Data and analyze Big Data. - apply tools and techniques to analyze Big Data. #### CSBX23 ## **XML AND WEB SERVICES** L T P C 3 0 0 3 ## **OBJECTIVES:** - To provide the theory behind web services. - To establish the role of XML in web services. - To describe the web services. - To examine the role of different technologies. # MODULE I WEB SERVICES 6 Introduction: Web services - SOAP WSDL UDDI-Importance of web services— The evolution of web applications Not just another distributed computing platform - Web services and enterprises. ## MODULE II XML FUNDAMENTALS 9 XML Fundamentals: The Lingua Franca of web services- XML Documents-XML namespaces Explicit and Default namespaces, Inheriting namespaces, And not inheriting namespaces, Attributes and namespaces -XML Schema XML schema and namespaces, A first schema, Implementing XML schema types, The any Element, Inheritance, Substitution groups, Global and local type declarations, Managing Schemas, Schemas and instance documents, XML schema best practices. # MODULE III OVERVIEW OF SOAP 7 Overview of SOAP - HTTP - XML-RPC - SOAP: Protocol - Message Structure-Intermediaries - Actors - Design Patterns And Faults - SOAP With Attachments. ## MODULE IV UDDI 8 UDDI at a glance- The UDDI Business registry- UDDI under the covers - Accessing UDDI- How UDDI is playing out. # MODULE V CONVERSATIONS 9 Conversations: Overview - Web Services - Web services Conversation Language - WSCL Interface components - The Bar scenario conversations - Relationship between WSCL and WSDL. ## MODULE VI CURRENT STATE 6 Current Issues: Semantic Web, Role of Meta Data in web content- Architecture of Semantic web- Content Management- Workflow-XLANG- BPEL4WS. **Total Hours: 45** ## **TEXT BOOKS:** - 1. Glenn Hostetler, Sandor Hasznos and Christine Heron, Web Service and SOA Technologies, Practicing Safe Techs", 1st Edition, 2009. - 2. Sandeep Chatterjee, James Webber, "Developing Enterprise Web Services", 1st Edition, Pearson Education, 2004. ## **REFERENCES:** - 1. Frank. P. Coyle, "XML, Web Services And The Data Revolution", 1st Edition, Pearson Education, 2002. - 2. Ramesh Nagappan, Robert Skoczylas and Rima Patel Sriganesh, "Developing Java Web Services", Wiley Publishing Inc., 2004. ## **OUTCOMES:** - form XML constructs. - describe role of web services in different applications. - compare the different technologies. # CSBX24 # INFORMATION RETRIEVAL L T P C 3 0 0 3 ## **OBJECTIVES:** - To explain the role of logic in knowledge Engineering. - To describe the role of ontology as a representational and reasoning mechanism in information retrieval. - To show how effective information search and retrieval is interrelated with the organization and description information to be retrieved - To discuss the classification and clustering algorithms. ## MODULE I KNOWLEDGE REPRESENTATION 6 Knowledge representation - Basics of Propositional logic- Predicate logic-reasoning using First Order Logic-unification- Forward chaining-Backward chaining-Resolution. #### MODULE II ONTOLOGY DEVELOPMENT 7 Description logic-taxonomies-Topic maps-Ontology-Definition-expressing ontology logically-ontology representations-XML-RDF-RDFS-OWL-OIL-Ontology development for specific domain. ## MODULE III INFORMATION RETRIEVAL 7 Parallel and distributed IR- Multimedia IR- Data modeling-Query languages-Web Searching Basics-Characterizing the Web-Search Engines-Web crawling and indexes-link analysis. ## MODULE IV INFORMATION RETRIEVAL MODELING 9 Information retrieval - Taxonomy-formal characterization-Classic information retrieval-Set theoretic model-Algebraic model-Probabilistic model-Structured text retrieval models-Models for browsing-Retrieval performance evaluation-Keyword based querying-Pattern matching-Structural queries-Query operations. ## MODULE V CLASSIFICATION 8 Language models for information retrieval-Text classification, Naïve Bayes-Vector space classification. ## MODULE VI CLUSTERING 8 Support vector machines and machine learning on documents-Flat clustering-Hierarchical clustering-Case study on cluster analysis. **Total Hours: 45** ## **REFERENCES:** - 1. Stuart Russell-Peter Norvig, "Artificial Intelligence
A Modern Approach", 3rd Edition, Pearson Education, 2009. - Michael C.Daconta,leo J. Obart and Kevin J Smith, "Semantic Web A Guide to the Future of XML,Web Services and Knowledge Management", Wiley Publishers ,2003. - 3. Elain Rich, Kevin Knight, B. Nair "Artificial Intelligence", 3rd Edition, Tata McGraw Hill, 2008. - 4. Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze, "Introduction to Information Retrieval", Cambridge University press, 2008. ## **OUTCOMES:** - represent knowledge in logical form. - form the ontology for different domains and generate the equivalent XML representations. - describe how the web search works and classify search engines. - explain the models for information retrieval. - enumerate the role of classification and clustering algorithms. #### CSBX25 ## LANGUAGE TECHNOLOGIES L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the issues and challenges in natural language and the various modules of a typical natural language processing system. - To learn the indexing and searching processes of a typical information retrieval system and to study NLP based retrieval systems. - To gain knowledge about typical text categorization and clustering techniques. - To know about evaluation techniques for information retrieval and text mining. ## MODULE I INTRODUCTION 9 Natural Language Processing - Linguistic Background- Spoken language input and output Technologies - Written language Input - Mathematical Methods - Statistical Modeling and Classification Finite State methods Grammar for Natural Language Processing. ## MODULE II INFORMATION RETRIEVAL 9 Parsing - Semantic and Logic Form - Ambiguity Resolution - Semantic Interpretation. Information Retrieval architecture - Indexing- Storage - Compression Techniques - Retrieval Approaches - Evaluation - Search engines- Commercial search engine features- Search engines for Natural Language processing - Performance measures. # **MODULE III TEXT MINING** 9 Document Processing - NLP based Information Retrieval - Information Extraction. Categorization - Extraction based Categorization- Clustering-Hierarchical Clustering- Document Classification and routing- Finding and organizing answers from Text search - Use of categories and clusters for organizing retrieval results. ## MODULE IV GENERIC ISSUES 6 Text Categorization and efficient Summarization using Lexical Chains - Pattern Extraction (evaluation). Multilingualism - Multilingual Information Retrieval and Speech processing. ## MODULE V MULTIMODALITY 6 Text and Images - Modality Integration - Transmission and Storage - Speech coding- Evaluation of systems - Human Factors and user Acceptability. ## MODULE VI APPLICATIONS 6 Machine Translation - Transfer Metaphor - Interlingua and Statistical Approaches- Discourse Processing - Dialog and Conversational Agents - Natural Language Generation - Surface Realization and Discourse Planning. **Total Hours: 45** ## **TEXT BOOKS:** - 1. Daniel Jurafsky and James H. Martin, "Speech and Language Processing", Pearson Education India, 2nd Edition, 2009. - 2. Gerald J. Kowalski and Mark.T. Maybury, "Information Storage and Retrieval systems", 2nd Edition,Kluwer academic Publishers, 2002. ## **REFERENCES:** - Nitin Indurkhya and Fred J. Damerau, "Handbook of Natural Language Processing", 2nd Edition, Chapman & Hall/CRC Machine Learning & Pattern Recognition, 2010. - 2. Tomek Strzalkowski, "Natural Language Information Retrieval ", Kluwer academic Publishers, 1999. - 3. Christopher D.Manning and Hinrich Schutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999. - 4. Michael W. Berry, "Survey of Text Mining: Clustering, Classification and Retrieval", Springer Verlag, 2003. ## **OUTCOMES:** - resolve ambiguity in formal logic. - describe operation of a search engine with emphasis on natural languages. - explain how text mining and speech processing works for natural languages. ## CSBX26 ## **CLUSTERING TECHNIQUES** 1 T P C 3 0 0 3 #### **OBJECTIVES:** - To establish the role of preprocessing techniques in clustering. - To expose the feature extraction methods. - To provide the theory behind clustering and association analysis. - To provide overview of different methods of clustering. # MODULE I PREPROCESSING 9 Data Pre-Processing and Characterization: Data Cleaning - Data Integration and Transformation - Data Reduction - Discretization and Concept Hierarchy Generation - Primitives. ## MODULE II FEATURE EXTRACTION 6 Feature Extraction - Distance Measure - Euclidean distance - Mahalonobis distance - Manhattan distance. ## MODULE III CLASSIFICATION 7 Classification: Classification - Decision Tree Induction - Bayesian Classification- Prediction -Back Propagation. #### MODULE IV PRINCIPLES OF PATTERN RECOGNITION 8 Patterns and features, training and learning in pattern recognition approach-Supervised-Unsupervised learning, different types of pattern recognition. ## MODULE V CLUSTER ANALYSIS 9 Cluster analysis: Types of data - Clustering Methods - K-Means clustering-K-Medoid clustering-hierarchical clustering-Agglomerative clustering- Partitioning methods - Model based clustering methods - Outlier analysis. # MODULE VI APPLICATIONS 6 Cluster analysis applications in image processing-Data mining and warehousing-Neural networks-Genetic algorithms. **Total Hours: 45** ## **REFERENCES:** - Sugato Basu, Ian Davidson, Kiri L.wagsstaff," Constrained Clustering: Advances in Algorithms, Theory, and Applications", Chapman and Hall/CRC press, 2008. - 2. Paulraj Ponnaiah, "Data Warehousing Fundamentals", Wiley Publishers, 2001. - 3. Earl Gose, Richard Johnsonbaugh, Steve Jost, "Pattern Recognition and Image Analysis", Prentice Hall of India Pvt. Ltd., New Delhi, 1999. - 4. Mark Nixon, Alberto S Aguado, "Feature Extraction & Image Processing", 2nd Edition, Academic Press, 2008. # **OUTCOMES:** - reduce and preprocess data for clustering. - extract features using feature extraction methods. - explain pattern recognition techniques. - apply clustering in different applications. #### CSBX27 ## KNOWLEDGE ENGINEERING L T P C 3 0 0 3 #### **OBJECTIVES:** - To establish the role of logic in Knowledge Engineering. - To introduce the concept of resolution and reasoning in Knowledge Engineering. - To show how the defaults and uncertainties are represented - To trace how the reasoning takes place in knowledge engineering ## MODULE I INTRODUCTION 8 Knowledge Representation and Reasoning - First order Logic - Syntax, Semantics Pragmatics - Expressing Knowledge - Levels of Representation - Knowledge Acquisition and Sharing - Sharing Ontologies-Language Ontologies - Language Patterns - Tools for Knowledge Acquisition. #### MODULE II RESOLUTION AND REASONING 8 Proportional Case - Handling Variables and Qualifies - Dealing with Intractability-Reasoning with Horn Clauses - Procedural Control of Reasoning-Rules in Production- Description Logic - Issues in Engineering -Vivid Knowledge-Beyond Vivid. ## MODULE III REPRESENTATION 7 Object Oriented Representations - Frame Formalism - Structured Descriptions - Meaning and Entailment - Taxonomies and Classification - Inheritance - Networks - Strategies for Defeasible Inheritance - Formal Account of Inheritance Networks. ## MODULE IV DEFAULTS 5 Defaults - Introduction - Closed World Reasoning - Circumscription - Default Logic - Limitations of Logic. # MODULE V UNCERTAINTY AND EXPRESSIVENESS 8 Fuzzy Logic - Nonmontonic Logic - Theories and World - Semiotics - Auto epistemic Logic - Vagueness - Uncertainty and Degrees of Belief - Noncategorical Reasoning - Objective and Subjective Probability. ## MODULE VI ACTIONS AND PLANNING Explanation and Diagnosis - Purpose - Syntax, Semantics of Context - First Order Reasoning - Modal Reasoning in Context - Encapsulating Objects in Context - Agents - Actions - Situational Calculus - Frame Problem - Complex Actions - Planning - Strips - Planning as Reasoning - Hierarchical and Conditional Planning. **Total Hours: 45** 9 # **REFERENCES:** - 1. Simon Kendal and Malcolm Creen, "An Introduction to Knowledge Engineering", Springer, 2007. - 2. Ronald Brachman, Hector Levesque, "Knowledge Representation and Reasoning", The Morgan Kaufmann Series in Artificial Intelligence, 2004. - 3. John F. Sowa, "Knowledge Representation: Logical, Philosophical, and computational Foundations", 1st Edition, Brooks/Cole Publishers, 2000. ## **OUTCOMES:** - convert knowledge into formal logic statements - apply the resolution and reasoning techniques for knowledge interference. - list the limitations of formal logic and apply fuzzy logic to represent uncertainty. - describe techniques for planning and reasoning. #### CSBX28 VISI ## **VISUALIZATION TECHNIQUES** L T P C 3 0 0 3 ## **OBJECTIVES:** - To describe the principles of visual thinking. - To show how the 2D space is mapped. - To showcase the applications of visualization. ## MODULE I VISUAL THINKING 6 Visual thinking - Visual detail - Top down Vs bottom up process - Implications for design - Steps in visual thinking - Distributed cognition. ## MODULE II REPRESENTING KNOWLEDGE 9 Language and representation of knowledge - Mental models and representations - Operations of representation and interpretation - Examples of graphic representations - Semantic trees - Concept maps - Semantic networks - ER diagrams - Algorithms - Flowcharts - Inference trees - Diagnosing and assessing knowledge - Structuring information transfer - Knowledge representation and learning. ## MODULE III MODELING USING A SEMI FORMAL VISUAL LANGUAGE 9 Basis of the MOT (Modeling using Object types): Schema representation in MOT, Objectives of the representation, Construction Principles - Basic Knowledge Types and Relations - Syntax Rules of the MOT Language: The MOT meta-model, Rules regarding the origin and destination of links - Rules regarding cycles and multiplicity of links -Representing other types of models in MOT. ## MODULE IV STRUCTURING 2D SPACE 6 Patterns - Pattern processing
machinery - Binding process - Texture regions-Patterns channels and attention - Visual pattern queries - Pattern for design -Semantic pattern mappings. # MODULE V PREDICTIVE MODELING 9 Predictive modeling - Testing modeling accuracy - Models predictive accuracy: Scatter plots - ROC charts - Lift charts. ## MODULE VI CASE STUDIES 6 Industry specific data mining - Data analysis case study - Credit scoring case study - Data mining non tabular data. **Total Hours: 45** ## **REFERENCES:** - 1. Colin Ware," Visual Thinking for Design",1st Edition, Morgan Kaufmann, 2008. - 2. Gilbert Paquette, "Visual Knowledge Modeling for Semantic Web Technologies: Models and Ontologies", IGI Global, 2010. - 3. Glenn J Myatt, Wayne P. Johnson, "Making sense of Data A Practical Guide to Data Visualization, Advanced Mining Methods and Applications", Wiley, 2009. - 4. Tom Soukup and Ian Davidson, "Visual Data Mining: Techniques and Tools for Data Visualization and Mining", John Wiley & Sons, 2002. # **OUTCOMES:** - relate visual thinking with visualization. - relate commonly used artifacts with visualization. - learn the modeling using object types. - apply visualization to real-life situations. # CSBX29 DATA WAREHOUSING AND BUSINESS INTELLIGENCE L T P C 3 0 0 3 #### **OBJECTIVES:** - To provide the students with a data based view of marketing decisions. - To equip the students with the knowledge for basic business data processing. - To cover concepts and fundamentals of Data Mining for better marketing campaigns and customer management. ## MODULE I DATA MINING 9 Data Mining: - Data Mining Functionalities - Data Preprocessing - Data Cleaning- Data Integration and Transformation - Data Reduction - Data Discretization and Concept Hierarchy Generation. Association Rule Mining: - Efficient and Scalable Frequent Item set Mining Methods - Mining Various Kinds of Association Rules - Association Mining to Correlation Analysis - Constraint-Based Association Mining. ## MODULE II BUSINESS INTELLIGENCE 8 Effective and timely decisions - Data, information and knowledge - Role of mathematical models - Business intelligence architectures: Cycle of a business intelligence analysis - Enabling factors in business intelligence projects - Development of a business intelligence system - Ethics and business intelligence ## MODULE III DATA ANALYSIS 7 Business focussed data analysis - Top down logical data modelling - Bottom up source data analysis - Data cleansing - Deliverables of data analysis - Importance of data analysis. ## MODULE IV KNOWLEDGE DELIVERY 9 The Business Intelligence User Types- Standard Reports-Interactive Analysis and Ad Hoc Querying- Parameterized Reports and Self-Service Reporting-dimensional analysis- Alerts/Notifications- Visualization: Charts- Graphs-Widgets-Scorecards and Dashboards- Geographic Visualization- Integrated Analytics- Considerations: Optimizing the Presentation for the Right Message. ## MODULE V EFFICIENCY 6 Efficiency measures - The CCR model: Definition of target objectives - Peer groups - Identification of good operating practices: cross efficiency analysis - Virtual inputs and outputs - Other models. ## MODULE VI FUTURE OF BUSINESS INTELLIGENCE 6 Future of business intelligence-Emerging Technologies, Predicting the Future, BI Search & Text Analytics-Advanced Visualization- Rich Report, Future beyond Technology. **Total Hours: 45** ## **REFERENCES:** - Larissa T. Moss, S. Atre, "Business Intelligence Roadmap: The Complete Project Lifecycle for Decision Support Applications", Addison Wesley Reprint, 2003. - 2. Carlo Vercellis, "Business Intelligence: Data Mining and Optimization for Decision Making", 2nd Edition, Wiley Publications, 2011. - 3. David Loshin,"Business Intelligence: The Savvy Manager's Guide", 2nd Edition, Morgan Kaufman, 2012. - 4. Cindi Howson, "Successful Business Intelligence: Secrets to Making BI a Killer App", 1st Edition, McGraw-Hill Osborne Media, 2007. # **OUTCOMES:** - approach business problems data-analytically. - interact competently on the topic of data mining for business intelligence. - have had hands-on experience mining data. CSBX30 WEB MINING L T P C 3 0 0 3 ## **OBJECTIVES:** - To give in-depth understanding of the concepts and the working principles of mining the World Wide Web. - To make them understand supervised and unsupervised learning and their application to Web Mining. - To focus on algorithms related to crawling, extraction and integration of Web Information. ## MODULE I MINING FOUNDATION 8 Basics of Mining - Data Mining Vs Web Mining - Concepts of Association Rules-Apriori Algorithms - Mining With Minimum Supports - Mining Class Association Rules - GSP - Prefix Span - Generating Rules from Sequential Patterns. ## MODULE II SUPERVISED LEARNING 8 Supervised Learning: Concepts - Decision Tree Induction - Classifier Evaluation - Rule Induction - Rule Learning: Learn - One - Rule Function-Classification Using Class Association Rules - Classification using Normal Association Rules - Naïve Bayesian Classification - Support Vector Machines-K. Nearest Neighbor Learning. # MODULE III UN-SUPERVISED LEARNING 8 Unsupervised Learning: K-means Clustering - Representation of Clusters - Hierarchical Clustering - Distance functions - Cluster Evaluation. ## MODULE IV WEB MINING AND CRAWLING 7 Basic Concepts - Information Retrieval Models - Evaluation measure - Link Analysis - HITS Algorithm - Community Discovery - Web Crawling: Crawler Algorithm - Community Discovery - Web Crawler Algorithm - Implementation Issues - Types of Crawlers. # MODULE V WRAPPER GENERATION AND INFORMATION INTEGRATION 7 Wrapper Induction - Extraction Rules - Examples - Instance - Based Wrapper Learning - Problems - String Matching and Tree Matching - Multiple Alignment - Extraction Based on Single List Page Extraction Based on Multiple Pages - Information Integration:Matching Approaches Domain and Instance Level Matching Combing Similarities Issues in Matching Integration of Web Query Interfaces . ## MODULE VI EMERGING TRENDS IN WEB MINING 7 Opinion Mining :Sentiment Classification - Feature Based Opinion Mining and Summarization - Sentence and Relation Mining - Opinion Search - Opinion Spam Detection - Extracting and Analyzing Web Social Networks - Web Mining and recommendation Systems. **Total Hours: 45** ## **TEXT BOOKS:** - 1. Bing Liu,"Web Data Mining", 1st Edition, Jones and Barlett Publishers, 2010. - 2. Alex Berson, Stephen J. Smith, "Data Warehousing, Data Mining & DLAP", Tata Mc Graw Hill. 2004. ## **REFERENCES:** - 1. George Meghabghab, Abraham Kandel, "Search Engineers, Link Analysis and Use Web Behaviour: A Unifying Web Mining Approach", Springer, 2008. - 2. Anthony Scime,"Web Mining: Application and Techniques", Idea Group Publishing, 2005. - 3. Gordon S. Linoff, Michael J.A.Berry, "Mining the Web Transforming Customer Data into Customer Value", Wiley, 2002. ## **OUTCOMES:** - have understanding of basic concepts and principles of search engines. - conduct business intelligence from online resources. - apply Web Mining strategies and algorithms in their workplace or research careers. ## CSBX31 CONTENT MANAGEMENT AND WEB PUBLISHING L T P C 3 0 0 3 #### **OBJECTIVES:** - To give the basic understanding of content management. - To learn about the various information models. - To apply the concepts of content management and publish them on the web. # MODULE I INTRODUCTION TO WEB PUBLSIHING 7 Basics of Web Publishing - Introduction to HTML - Introduction to PHP - Adobe Acrobat and PDF - Preparing content and format - Configuring the Servers. ## MODULE II WEB PUBLISIHING AND FILEMAKER 9 Building a simple FileMaker file - Viewing FileMaker Data - Altering FileMaker Data - Working with portals - Working with images - FileMaker Layout - Performance Tuning - Security Concerns- Error Handling and Prevention - FileMaker PHP API. ## MODULE III CONTENT MANAGEMENT BASICS 8 Data, Information and Content - Content Format - Content Structure - Content Context - CMS overview - Collection System - Management System - Publishing System - Principles of CMS - Limits of CMS - Technology Aspects-Branches of CMS. ## MODULE IV CONTENT MANAGEMENT SOLUTION 7 Phased Solution Approach - Authoring and Acquiring content - Content Management repository - Assembling and Linking content - Content Delivery - Information Sources. ## MODULE V INFORMATION MODELS, TYPES AND CONTENT UNITS 7 Three-Tier Structure information model - Static Information Models - Dynamic Information Models - Defining Component of the model - Building a Model - Developing information types - Developing Content Units. ## MODULE VI CONTENT PLANS AND STRATEGIES 7 Content Plans for Static Web Sites - Content Plans for Dynamic Web Sites - Developing Single Source strategies - Plan and author for reuse - Staffing - Establish business case for CMS. **Total Hours: 45** # **TEXT BOOKS:** - 1. Bob Boiko, "Content Management Bible", 2nd Edition, Wiley, 2004. - 2. Jonathan Stark," Web Publishing with PHP and FileMaker 9", 1st Edition, Sams Publishing, 2007. - 3. JoAnn T. Hackos, "Content Management for Dynamic Web Delivery", 1st Edition, Wiley, 2002. # **REFERENCES:** - 1. Russell Nakano, "Web Content Management: A Collaborative Approach", Addison-Wesley Professional, 2002. - 2. Todd Kitta, Brett Grego, Chris Caplinger, Russ Houberg, "SharePoint Server 2010 Enterprise Content Management", Wrox, 2011. - 3. Gaurav Kathuria, "Web Content Management with Documentum: Setup, Design, Develop, and Deploy Documentum Applications", Packt Publishing, 2006. - 4. Bruce Page, Diana Holm "Web Publishing with Adobe Acrobat and PDF", Wiley Publications, 1996. #### **OUTCOMES:** - collect information and design appropriate information models. - use web publishing tools to design and publish the contents on the web. #### CSBX32 SOFTWARE REQUIREMENTS ENGINEERING L T P C 3 0 0 3 #### **OBJECTIVES:** - understand the concepts and the role of requirements engineering in software engineering. -
understand and gain practical experience of the current techniques, notations, methods, processes and tools used in requirements engineering. - document and prioritize requirements, and be able to recognize and help resolve conflicting requirements. #### MODULE I INTRODUCTION 7 The Essential Software requirement, Good practices for requirements engineering, Improving requirements processes,-Software requirements and risk management -Requirements elicitation- Requirements analysis documentation-Verifying requirements quality. ## MODULE II ANALYSING THE PROBLEM 8 The five steps in problem analysis- business modeling - Systems engineering of software intensive systems - Understanding user and stakeholders needs-Features of a product or system -Interviewing - Requirements workshops-Brain storming and Idea reduction-Storyboarding. # MODULEIII REQUIREMENTS MANAGEMENT PRINCIPLES AND PRACTICES 7 8 Requirements management Principles and practices- Requirements attributes-Change Management Process- Requirements Traceability Matrix- Links in requirements chain. #### MODULEIV DEFINING AND REFINING REQUIREMENTS Software Requirements Modeling Use Case Modeling- Analysis Models-Dataflow diagram- State transition diagram- Class diagrams- Object analysis-Problem Frames Software Estimation Components of Software Estimations-Estimation methods- Problems associated with estimation- Key project factors that influence estimation. # MODULE V SOFTWARE REQUIREMENTS ANALYSIS Size Estimation Two views of sizing- Function Point Analysis- Mark II FPA-Full Function Points- LOC Estimation- Conversion between size measures-Effort, Schedule and Cost Estimation - Estimation Factors- Approaches to Effort and Schedule Estimation- COCOMO II- Putnam Estimation Model-Algorithmic models- Cost Estimation. ## MODULE VI ANALYSISTOOLS FOR REQUIREMENT MANAGEMENT 8 Tools for Requirements Management and Estimation Requirements Management Tools: Benefits of using requirements management tool-Commercial requirements management tool-Rational Requisite pro- Caliber RM- Implementing requirements management automation- Software Estimation Tools: Desirable features in software estimation tools- IFPUG-COCOMO II- SLIM (Software Life Cycle Management) Tools. **Total Hours: 45** 7 #### **TEXT BOOKS:** - 1. Stephen Withal, "Software Requirement Patterns", 3rd Edition, Microsoft Press, 2011. - 2. Karl & Joy Beatty," Software Requirements", 3rd Edition, Microsoft Press, 2012. - 3. Swapna Kishore & Rajesh Naik, "Software Requirements and Estimation", Tata McGrawHill, 2008. #### **REFERENCES:** - 1. Ian Sommerville and P Sawyer, "Requirements Engineering a Good Practice Guide", 1st Edition, Wiley India, 1997. - 2. Leffingwell, D.Widrig, D,"Managing Software Requirements A Use Case Approach", 2nd Edition, Pearson Education,2000. ## **OUTCOMES:** - understand the need for requirements for large-scale systems. - understand the stakeholders involved in requirements engineering. - understand models of requirements. - understand functional requirements and understand non-functional requirements. ### CSBX33 SOFTWARE TESTING TECHNIQUES L T P C 3 0 0 3 #### **OBJECTIVES:** - To learn and understand the recent trends in the field of Software testing. - To have a thorough understanding about the test design strategy. - To learn and understand real time testing case study. ## MODULE I SOFTWARE TESTING - QUALITY STANDARDS 8 Software Processes and Methodologies - Quality Standards, Practices & Conventions - Improving Quality with Methodologies - Structured and Information Engineering - Measuring Customer Satisfaction- Software Quality Engineering-Defining Quality Requirements - Management Issues for Software Quality - Data Quality Control - Benchmarking and Certification - software testing - Overview of Testing Maturity Model (TMM) - TMM levels - The Tester's Role in a Software Development Organization. Origins of Defects - Defect Examples-Developer and Tester Support for Developing a Defect Repository. #### MODULE II TEST CASE DESIGN 8 Test Case Design Strategies - Using Black Box Approach to Test Case Design-Random Testing - Requirements based testing - Boundary Value Analysis - Decision tables - Equivalence Class Partitioning - State-based testing - Cause-effect graphing -Error guessing - Compatibility testing - User documentation testing - Domain testing Using White Box Approach to Test design - Test Adequacy Criteria - Static testing vs. structural testing - code functional testing-Coverage and Control Flow Graphs - Covering Code Logic - Paths - Their Role in White-box Based Test Design - Code complexity testing - Evaluating Test Adequacy Criteria. ## MODULE III LEVELS OF TESTING 7 The Need for Levels of Testing - Unit Test - Unit Test Planning -Designing the Unit Tests - The Test Harness - Running the Unit tests and Recording results-Integration tests - Designing Integration Tests - Integration Test Planning - Scenario testing -Defect bash elimination - System Testing - Acceptance testing-Performance testing - Regression Testing - Internationalization testing - Adhoc testing - Alpha , Beta Tests - testing OO systems - Usability and Accessibility testing - Configuration testing - Compatibility testing - Testing the documentation- Website testing. #### MODULE IV TEST MANAGEMENT 7 Testing and Debugging Goals and Policies - Test Planning - Test Plan Components - Test Plan Attachments - Locating Test Items - Reporting Test Results - The role of three groups in Test Planning and Policy Development - Process and the Engineering Disciplines - Introducing the test specialist - Skills needed by a test specialist - Building a Testing Group. # MODULE V CONTROLLING AND MONITORING 7 Measurement and Milestones for Controlling and Monitoring - Status Meetings-Reports and Control Issues - Criteria for Test Completion - SCM - Types of reviews - Developing a review program - Components of Review Plans - Reporting review results. #### MODULE VI TEST AUTOMATION 8 Software test automation - Skills needed for automation - Scope of automation-Design and architecture for automation - Requirements for a test tool - Challenges in automation - Test metrics and measurements - Project, progress and productivity metrics. **Total Hours: 45** ### **TEXT BOOKS:** - 1. M G Limaye, "Software Testing Principles, Techniques and Tools", Tata McGraw Hill, 2011. - 2. Elfriede Dustin, "Effective Software Testing", Pearson Education, 2003. - 3. Renu Rajani and Pradeep Oak, "Software Testing Effective Methods, Tools and Techniques", Tata McGraw Hill, 2003. ## **REFERENCES:** - 1. Ilene Burnstein, "Practical Software Testing", Springer International Edition, 2003. - 2. Stephen Kan, "Metrics and Models in Software Quality", 2nd Edition, Addison-Wesley, 2004. 3. Edward Kit, "Software Testing in the Real World - Improving the Process", Pearson Education, 1995. ## **OUTCOMES:** - understand software testing techniques and develop the software testing models. - develop various testing design strategies. - understand various software testing tools and automation techniques. #### **SOFTWARE AGENTS** L T P C 3 0 0 3 #### **OBJECTIVES:** - The aim of this course is to introduce the concepts, techniques and applications of software agents. - To understand the nature, concepts and techniques of the agent technology and its standards and to evaluate current software agent systems. #### MODULE I INTRODUCTION 8 The Vision Thing- Some Views of the Field- Agents as a paradigm for software engineering Agents as a tool for understanding human societies- Research-Ethical- Professional and Legal Issues. ## MODULE II MULTI AGENTS SYSTEM 7 Agent Negotiation - Intelligent Agents- Agents and Objects- Agents and Expert Systems- Agents as Intentional Systems- Abstract Architectures for Intelligent Agents- How to Tell an Agent What to Do. ## MODULE III DEDUCTIVE REASONING AGENTS 7 Agents Framework - Agent Reasoning - Agents as Theorem Provers- Agent-Oriented Programming- Concurrent MetateM. ## MODULE IV PRACTICAL REASONING AGENTS 8 Practical Reasoning = Deliberation + Means-Ends Reasoning- Means-Ends Reasoning- Implementing a Practical Reasoning Agent- The Procedural Reasoning System- Agent communication languages. ## MODULE V REACTIVE AND HYBRID AGENTS 7 Reactive Agents- The Subsumption Architecture- PENGI- Situated automata-The Agent Network Architecture- The Limitations of Reactive Agents- Hybrid Agents- Touring Machines- InteRRaP- 3T- Stanley. # MODULE VI MULTI- AGENT INTERACTIONS 8 Utilities and preferences-Multi-agent encounters- Dominant strategies and nash equilibria- Competitive and zero sum interactions-the prisoner's dilemma- Other symmetric 2*2 interactions- Dependence relations in multi-agent systems. **Total Hours: 45** # **TEXT BOOK:** 1. Michael Wooldridge, "An Introduction to MultiAgent Systems", 2nd Edition, John Wiley & Sons, 2009. # **REFERENCES:** - 1. Jeffrey M.Bradshaw,"Software Agents",MIT Press,2000. - 2. Richard Murch, Tony Johnson, "Intelligent Software Agents", Prentice Hall, 2000. - 3. Gerhard Weiss, "Multi Agent Systems- Modern Approach to Distributed Artificial Intelligence", MIT Press, 2000. ## **OUTCOMES:** - understand the basic concepts techniques and applications of software agents. - learn how to do a research. - understand software agents design tools. #### **USER INTERFACE DESIGN** L T P C 3 0 0 3 ## **OBJECTIVES:** - To introduce the importance of human Computer interface. - To understand the Graphical User interface and Web user interface. - To introduce the guidelines for interface design process. #### MODULE I INTRODUCTION 7 The importance of the user interface design, importance of user interface, human computer interface-Characteristics of Graphical and web user interface, Graphical User interface, Web user interface, Principles of user interface design. #### MODULE II KNOWING THE USER 7 The user interface design process -Know your user or client, important human characteristic in design, Human
consideration in design -Understand the Business function, Human consideration in screen design, Technical consideration in interface design. ## MODULE III SYSTEM MENUS AND NAVIGATION SCHEMES 8 Develop System Menus and Navigation menus-Select the proper kinds of windows-Select the proper device based controls. #### MODULE IV CONTROLS AND WEB PAGES 8 Select the proper screen based controls-Text for web pages-Provide effective feedback and Guidance and Assistance. ## MODULE V PROVIDE EFFECTIVE INTERNATIONALIZATION 8 Provide internationalization and Accessibility - Create meaningful graphics, icons and Images-Choose the proper colors. ## MODULE VI TEST, TEST AND RETEST 7 Organize and layout Windows and Pages - Test, Test and Retest, The purpose and importance of usability testing, kinds of test -Analyze, Modify and Retest. **Total Hours: 45** # **TEXT BOOK:** 1. Wilbert O.Galitz, "The essential guide to User Interface Design", 3rd Edition, Wiley Publishers, 2009. # **REFERENCE:** 1. Alan Cooper, "The Essential of User Interface Design", Wiley, Dream tech Ltd, Reprint, 2008. # **OUTCOMES:** - differentiate the graphical user interface and web user interface. - understand the design process, Guidelines and testing techniques for the UI screen. - design their own interaction page for applications. #### PATTERN RECOGNIZATION L T P C 3 0 0 3 #### **OBJECTIVES:** - To enable the students to understand the fundamentals of Pattern recognition. - The students should learn to choose an appropriate feature of Pattern classification algorithm for a pattern recognition problem and properly implement the algorithm. # MODULE I PATTERN RECOGNIZATION OVERVIEW 7 Pattern Recognization - Data Sets - Different Paradigms - Representation - Data Structures - Representation Of Clusters - Proximity Measures - Size Of Patterns - Feature Extraction - Feature Selection - Evaluation Of Clustering - Evaluation Of Classifiers. ## MODULE II NEAREST NERIGHBOUR BASED CLASSIFIER 7 Nearest Neighbor Algorithm - Variants of NN Algorithm - Use of Algorithms - Data Reduction - Prototype Selection. # MODULE III BAYERS CLASSIFIER 8 Bayes Theorem - Minimum Error Rate Classifier - Estimation of Probabilities-Comparison With The NNC - Naïve Bayes Classifier - Bayesian Belief Network. ### MODULE IV DECISION TREES 8 Introduction - Decision Trees For Pattern Reorganization - Construction of Decision Trees - Splitting At The Nodes - Overfitting And Pruning - Examples Of Decision Tree Induction. ## MODULE V SUPPORT VECTOR MACHINES 8 Introduction - Learning the Linear Discriminant Function - Neural Networks - SVM for Classification. # MODULE VI CLUSTERING 7 Importance of Clustering - Hierarchical Algorithms - Partitional Clustering - Clustering Large Data Sets. **Total Hours: 45** # **TEXT BOOK:** 1. M. Narasimha Murty, V. Susheela Devi, "Pattern Recognition: An Algorithmic Approach", Springer, 2011. # **REFERENCE:** 1. R.O.Duda, P.E.Hart & D.G Stork, "Pattern Classification", 2nd Edition, J.Wiley Inc, 2001. # **OUTCOMES:** - understand the nature and inherent difficulties of the pattern recognition problems. - select a suitable classification process, features, and proper classifier to address a desired pattern recognition problem. # CSBX37 FOUNDATIONS ON SOFTWARE QUALITY ASSURANCE L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the role of a quality assurance process in the successful implementation of a blended learning initiative. - To review the possibilities for integrating blended learning best practices to support student success. - To provide an overview of our methodology for the public interest, for those who exercise the profession as accountants or auditors and for others who have a general interest in quality assurance methodology. #### MODULE I INTRODUCTION 5 Concept of quality-Quality and uncertainty-Quality and manufacturing-Quality and services- Historical evolution of quality approaches. ## MODULE II TOTAL QUALITY MANAGEMENT 8 Introduction - Measurements and controls in TQM - Approaches to TQM and quality improvement - Certification and ISO 9000/9004 - Examples and applications - Total Productive Maintenance (TPM) - Reengineering and TQM-Implementation. # MODULE III TOOLS AND MANAGEMENT OF QUALITY CONTROL Introduction -The tools of TQM-A statistical refresher -The reliability function-Formulation of problems under uncertainty - Examples and applications -Decision rules - Bayes rule and Bayesian decision making. ## MODULE IV INSPECTION AND ACCEPTANCE SAMPLING Introduction -Acceptance sampling -Rectifying inspection -Variables sampling plans -Inspection in a continuous process -Economic inspection sampling. ## MODULE V CONTROL CHARTS 8 8 Introduction -Process capability -Constructing control charts -Pre-control - Control charts and the ARL -CUSUM Charts-Interpreting charts -Economic control charts -The practice of control charts. ## MODULE VI STRATEGIE ISSUES AND ECONOMIES OF QUALITY Introduction -Strategic issues and quality management -Audits and problems-Contract and producer supplier relationships -Quality and contracts: In practice-Technology and strategic quality management -Information technology and quality. **Total Hours: 45** 8 #### **TEXT BOOKS:** - 1. Larry Webber, Michael Wallace, "Quality Control for Dummies",1st Edition, Wiley, 2012. - 2. Murali Chemuturi, "Mastering Software Quality Assurance", J. Ross Publishing, 2010. #### **REFERENCES:** - 1. The Institute of Internal Auditors, "Quality Assessment Manual", 6th Edition, The IIA Research Foundation, 2009. - 2. Linda Westfall, "The Certified Software Quality Engineer Handbook", Quality Press, Har/Cdr edition, 2009. # **OUTCOMES:** - understand the concept of quality assurance and total quality management. - understand the need for statistics in process control and product evaluation. # SOFTWARE DEVELOPMENT METHODOLOGIES L T P C 3 0 0 3 #### **OBJECTIVES:** - To learn about the various software process models, planning and scheduling. - To gain knowledge about analyzing a software system and the different stages of analysis. - To understand the various design procedures and testing strategies, quality assurance. ## MODULE I PROCESS MODELS 7 A generic view of processes - Process maturity - Process models - Agile process - Extreme programming - Software cost estimation - Risk analysis - Software project planning & scheduling. ## MODULE II REQUIREMENT ANALYSIS 7 System engineering hierarchy - Requirement engineering: Tasks, Initiating the process, eliciting requirements, Developing use cases - Negotiating requirements - Validating requirements - Building the analysis models: Concepts - Object Oriented Analysis - Scenario based modeling - Data & control flow oriented model - Class based model - Behavioral model. ## MODULE III SOFTWARE DESIGN 8 Design concepts - Design models - Pattern based design - Architectural design-Component level design - Class based and conventional components design-Real-time system design - User interface: Analysis and design. ## MODULE IV SOFTWARE TESTING 7 Software testing - Strategies - Issues - Test strategies for conventional and object oriented software - Validation and system testing - Testing tactics: White box testing, Basis path testing - Control structure testing - Black box testing - Object oriented testing - Testing GUI - Testing Client/Server -Documentation testing. ## MODULE V SOFTWARE QUALITY ASSURANCE 8 Software quality concepts - Quality assurance - Software technical reviews - Formal approach to software quality assurance - Reliability - Quality standards-Software quality assurance plan - Software maintenance - Software configuration management - Reverse engineering and reengineering - CASE tools. # MODULE VI EMERGING STANDARDS, TRENDS AND METHODOLOGIES 8 Agile - Scrum - Web Based Software Development- Web Service Orientation-Mobile Application Development - Software Engineering Body of Knowledge (SWEBOK) - Project Management Body of Knowledge (PMBOK). **Total Hours: 45** #### **TEXTBOOKS:** - 1. Roger Pressman, "Software Engineering: A Practitioner's Approach", 7th International Edition, McGraw-Hill, 2009. - 2. Ian Sommerville, "Software Engineering", 9th Edition, Addison-Wesley, 2010. #### REFERENCES: - 1. Steve McConnell, "Code Complete: A Practical Handbook of Software Construction", 2nd Edition, Microsoft Press, 2004. - 2. Jana Polgar, Greg Adamson, "New Generation of Portal Software and Engineering: Emerging Technologies", IGI Global, 2011. - 3. Bhuvan Unhelkar, "The Art of Agile Practice: A Composite Approach for Projects and Organizations", 1st Edition, Auerbach Publications, 2012. - Andrea De Lucia, Filomena Ferrucci, Genny Tortora, Maurizio Tucci, "Emerging Methods, Technologies and Process Management in Software Engineering", Wiley-IEEE Computer Society, 2008. # **OUTCOMES:** - analyze a software system and elucidate the requirements. - design an software system and apply testing strategies on it. - analyze, design and develop real time systems with quality assurance checks. # CSBX39 COMPUTER GRAPHICS L T P C 3 0 0 3 #### **OBJECTIVES:** - To use specific tools and software to produce a graphic product based on the principle of creative art. - To create a graphic product based on the principle of creative art. - To create graphic material using tools and software in line with the industrial norm. ## MODULE I 2D PRIMITIVES 8 Output primitives - Line, Circle and Ellipse drawing algorithms - Attributes of output primitives - Two dimensional Geometric transformation - Two dimensional viewing -Line, Polygon, Curve and Text clipping algorithms. ## MODULE II 3D CONCEPTS 8 Parallel and Perspective projections - Three dimensional object representation-Polygons, Curved lines, Quadric Surfaces - Visualization of data sets - 3D transformations - Viewing -Visible surface identification. # MODULE III COLOR MODELS 6 Color Models - RGB, YIQ, CMY, HSV - Animations - Conversation between HSV and RGB Models-HLS Color Model-Color Selection and
Applications. # MODULE IV COMPUTER ANIMATION 7 General Computer Animation, Raster, Key frame - Graphics programming using OPENGL - Basic graphics primitives - Drawing three dimensional objects- Drawing three dimensional scenes. #### MODULE V RENDERING 8 Introduction to Shading models - Flat and Smooth shading - Adding texture to faces - Adding shadows of objects - Building a camera in a program - Creating shaded objects - Rendering texture - Drawing Shadows. ## **MODULE VI FRACTALS** 8 Fractals and Self similarity - Peano curves - Creating image by iterated functions- Mandelbrot sets - Julia Sets - Random Fractals - Overview of Ray Tracing - Intersecting rays with other primitives - Adding Surface texture - Reflections and Transparency - Boolean operations on Objects. **Total Hours: 45** ## **TEXT BOOKS:** - Donald Hearn, Pauline Baker, "Computer Graphics with OPENGL C Version", 4th Edition, Pearson Education, 2010. - 2. F.S. Hill, "Computer Graphics using OPENGL", 3rd Edition, Pearson Education, 2009. #### REFERENCE: 1. James D. Foley, Andries Van Dam, Steven K. Feiner, John F. Hughes, "Computer Graphics- Principles and practice", 2nd Edition, Pearson Education, 2007. ## **OUTCOMES:** - identify the performance characteristics of advanced computer graphics pipeline. - distinguish between generic computer architecture and support for high performance graphics. - use surface and object modeling techniques to build 3D models. ### CSBX40 FOUNDATION OF PROJECT MANAGEMENT L T P C 3 0 0 3 #### **OBJECTIVES:** - To introduce the importance and key concepts of project management. - To understand the process of planning and controlling the project. - To introduce the concepts of portfolio project management. ## MODULE I INTRODUCTION 7 Project Management: The key to thrive in the Project Management World, Foundation Principles of Project Management, Knowing your key stack holders and winning their cooperation. ## MODULE II DEFINING THE PROJECT 7 Five key document to manage expectation and define success- Risk Management and work Breakdown Structure. ## MODULE III THE PLANNING PROCESS 8 Realistic scheduling- The art and science of accurate estimating- Balancing the trade off among cost, schedule and quality. #### MODULE IV CONTROLLING THE PROJECT 9 Building a high performance project team - Clear communication among project stake holders-Measuring Progress-Solving common project problems. ## MODULE V ADVANCE PROJECT MANAGEMENT 7 Enterprise Project Management- Requirement Engineering. # MODULE VI PROJECT PORTFOLIO MANAGEMENT 7 Project initiation, Information Technology project success factors-Align project resources with business strategy. **Total Hours: 45** ### **TEXT BOOK:** Eric Verzuh," The Fast Forward MBA in Project Management", 4th Edition, John Wiley and Sons, 2012. ## **REFERENCES:** - 1. "A Guide to the Project Management Body Of Language PMBOK(R) Guide", Project Management Institute, 5th Edition, 2013. - 2. Eric.S.Norman Shelly. A. Botherton, Robert. T. Fried, "Work Breakdown Structures: The Foundation for Project Management Excellience", John Wiley & Sons, 2008. # **OUTCOMES:** - understand the key concept of project management. - manage different projects in their workplace. - improve their personal job skill of becoming a valuable project manager in the years ahead. #### SOFTWARE PROCESS MODEL L T P C 3 0 0 3 #### **OBJECTIVES:** - To define and highlight importance of software process models. - To discuss the various strengths and weaknesses of important development models - To extend software process definitions to more explicitly address people-related considerations understand the key practices in extreme programming. # MODULE I INTRODUCTION 6 Software processes-Software process models - Process activities -Coping with change- The rational unified process. ## MODULE II SOFTWARE PROCESS AND PEOPLEWARE BASICS 7 Software process versus lifecycle - Software process research - Software process modeling - Peopleware - Human competencies - Modeling peopleware in the software process. #### MODULE III SOFTWARE PROCESS MODELS 8 8 Descriptive criteria - Activity oriented models - People oriented models - Activity oriented models. ## MODULE IV CAPABILITIES ORIENTED SOFTWARE PROCESS MODEL 8 Adding capabilities to the software process model - People dimension - Roles dimension - Product dimension - Capabilities based assignation method in action - Benefits of incorporating peoples capabilities into the software process. # MODULE V SOFTWARE PROCESS DYNAMICS AND SIMULATION 8 Modeling, Simulation and improvement - Software process simulation with system dynamics - High level software project modeling with system dynamics. ## MODULE VI SOFTWARE PROCESS MODELING Socio-Technical interaction network in free/open source development process-Discovering, modeling and re-enacting open source software development processes - Case study. **Total Hours: 45** ## **TEXT BOOKS:** - Silvia T.Acuna, Natalia Juristo, Ana Maria Moreno, Alicia Mon, "Software Process Model Handbook for Incorporating People's Capabilities", Springer, 2005. - 2. Maria I. Sanchez-segura (Editor) Silvia T. Acuna,"New Trends in Software Process Modeling", World Scientific Publishing, 2006. - 3. Ian Sommerville, "Software Engineering", 9th Edition, Pearson, 2010. ## **REFERENCES:** - 1. Rizwan Qureshi, "Software Process Models: To Improve the Efficiency of Software Development", VDM Publishing, 2010. - 2. Stefen Koch," Free/Open Source Software Development", IGI, 2005. ## **OUTCOMES:** - compare and contrast different software process models. - knowledge on Component-based development (CBD), Agile and Extreme Programming (XP). - understand the issues and problems of scaling agile development methods to the development of large software systems. #### SOFTWARE MAINTENANCE L T P C 3 0 0 3 #### **OBJECTIVES:** - To study in detail software maintenance and how it affects all levels of the software evolution process. - To impart key issues in software maintenance and solutions to overcome. - To provide knowledge on how the object-oriented software and client/server software, corporate education and training programs, creative cost controls, and others affect software maintenance. # MODULE I THE CONTEXT OF MAINTENANCE 7 Introduction to Basic concepts-Maintenance framework-Fundamentals of software change-Limitations and Economic Implications to Software Change-Maintenance process. ## MODULE II UNDERSTANDING OF MAINTENANCE 8 8 Program understanding-Reverse engineering-Reuse and reusability-Testing-Management and organizational issues. ## MODULE III PROBLEM SOLVING AND QUALITY ASSURANCE Problem Reporting - Problem Resolution- Fix Distribution-Other Forms of Maintenance- Metrics and Measurements - Software Quality Assurance Activities for Maintenance ## MODULE IV KEEPING TRACK OF MAINTENANCE PROCESS Configuration Management and Maintenance-Software Maintenance from the Customer's Perspective-Maintenance of Mission-Critical Systems. ## MODULE V MAINTENANCE TEAMS 7 8 Global Maintenance Teams- Maintenance and Other Life Cycle Activities-Building and sustaining maintainability- Common Technical Problems. # MODULE VI LOOKING TO THE FUTURE 7 Software maintenance management- Education and training-impact of object oriented technology on software maintenance- Software maintenance resources- The future of software maintenance. **Total Hours: 45** ## **TEXT BOOKS:** - 1. Penny Grubb, Armstrong A Takang, "Software Maintenance Concepts and Practice", 2nd Edition, World Scientific, 2003. - 2. Gopalaswamy Ramesh," Software Maintenance", 1st Edition, Mc Graw Hill Education, 2005. #### **REFERENCES:** - 1. Alain April, Alain Abran, "Software Maintenance Management", Wiley Publications, 2008. - 2. Thomas M.Pigoski," Practical Software Maintenance", Wiley Computer Publications, 2007. # **OUTCOMES:** - identifies the primary activities of software maintenance as: process implementation; problem and modification analysis; modification implementation; maintenance review/acceptance; migration; and retirement. - understands problem solving and software quality assurance for maintenance. - gains knowledge how that the end-user participation, product functionality, and usefulness of the project affect the software maintenance quality. #### **SOFTWARE DESIGN PATTERNS** L T P C 3 0 0 3 #### **OBJECTIVES:** - To enable the students to understand the fundamentals of various design patterns. - To make the students implement design patterns in java or c# to provide solutions to real world software design problems. - To give a thorough knowledge of several common techniques for structuring object oriented programs. # MODULE I THE OBJECT ORIENTED PARADIGM, THE UML 8 Overview - Problem Of Requirements - Dealing With Changes - Dealing With Changing Requirements - The Object - Oriented Paradigm - Special Object Methods - The UML - Use of UML - The Class Diagrams - Interaction Diagrams. ## MODULE II INTRODUCTION TO DESIGN PATTERNS Overview - Moving From Architectural To Software Design Patterns - Why Study Design Patterns? - Advantages of Study Design Patterns. ## MODULE III THE FACADE PATTERN AND THE STRATEGY PATTERN 8 Introducing to the facade pattern - Learning the façade pattern - Relating the facade problem to the CAD / CAM problem - An Approach to Handling New Requirements - Case Study - International E-Commerce System - Handling New Requirements - The Strategy Pattern - Using the Strategy Pattern. ## MODULE IV BRIDGE PATTERN AND ABSTRACT FACTORY PATTERN 9 Introducing the Bridge Pattern - Learning The Bridge Pattern - An Example - Deriving It - Abstract Factory Pattern - Introducing The Abstract Factory Pattern-Learning The Abstract Factory Pattern - An Example - Implementing It. # MODULE V THE PRINCIPLES AND STRATEGIES OF DESIGN PATTERN 7 The open-closed principle - The principle of designing from context - The principle of encapsulating variation - Abstract classes Vs Interfaces - The principle of
healthy skepticism. ## MODULE VI LESSONS FROM DESIGN PATTERNS: FACTORIES Factories - The universal context revisited - Factories follow guidelines - Limiting the vectors of change - Different roles of factories - Design patterns reviewed-How design patterns encapsulate implementations - Commonality and variability analysis and design patterns - Decomposing a problem domain into responsibilities - Patterns and contextual design - Design patterns and agile coding practices. **Total Hours: 45** 8 #### **TEXT BOOK:** 1. Allan Shalloway, James .R.Trott, "Design Patterns Explained: A New Perspective on Object Oriented Design", 2nd Edition, Pearson Education, 2008. #### **REFERENCES:** - 1. Joshua Kerievsky, "Refactoring to Patterns", 1st Edition, Addison Wesley Professional, 2004. - 2. Erich Gamma, Richard Helm Ralph Johnson, "Design Patterns: Elements of Resusable Object Oriented Software", Addison-Wesley, 1995. #### **OUTCOMES:** - design and apply existing software patterns. - analyze software problem and apply architectural patterns. - use the software design tool in an integrated environment. #### **SOCIAL NETWORK ANALYSIS** L T P C 3 0 0 3 # **OBJECTIVES:** - To give an overview of social networks and its importance. - To understand the social network concepts and various methods of analysis. - To expose and train on using various tools and techniques for analyzing and visualizing social media networks. #### MODULE I INTRODUCTION TO SOCIAL NETWORKS 8 Brief history of Social Network Analysis - Connected World - Networks: Actors, Relations and Attributes - Networks as Information Maps - Networks as Conduits- Leaders and Followers - Psychological foundations of social networks - Basic building Blocks. ## MODULE II NETWORK CONCEPTS 8 Individual Members of the Network - Sociological Questions about Relationships-Whole Social Networks - Distributions - Multiplexity - Roles and Positions - Network Segmentation - Graph Theory - Notations for Social Network Data. # MODULE III SOCIAL NETWORK ANALYSIS 8 Points, Lines and Density - Centrality and Centralization - Components, Cores and Cliques - Positions, Roles and Clusters - Dimensions and Displays. #### MODULE IV METHODOLOGIES 8 Graphs - Matrices - Relationship Measures - Centrality and Prestiges - Structural Equivalence - Visual Displays - Bookmodels - Network Position Measures - Affiliation networks - Lattices. # MODULE V ANALYSIS LEVELS 7 Actor Level in Complete Networks - Actor Level in Ego Networks - Dyad Level-Triad Level - Subgroups Level - Network Levels - Positions and Roles Analysis. # MODULE VI TOOLS AND TECHNOLOGIES 6 Twitter Analytics - Facebook Analytics - Google+ Analytics - Pajek - Network Visualization Tools. Total Hours: 45 ## **REFERENCES:** - 1. Charles Kadushin, "Understanding Social Networks: Theories, Concepts, and Findings", Oxford University Press, USA, 2011. - 2. Christina Prell, "Social Network Analysis: History, Theory and Methodology", SAGE Publications Ltd, 2011. - 3. David Knoke, Song Yang, "Social Network Analysis", 2nd Edition, SAGE Publications, 2007. - 4. John P Scott, "Social Network Analysis: A Handbook", 2nd Edition, SAGE Publications Ltd, 2000. # **OUTCOMES:** - understand the theories and concepts of social networks. - analyze the social networks by applying various methods of analysis, tools and techniques. #### CSBX45 BIG DATA ANALYTICS L T P C 3 0 0 3 #### **OBJECTIVES:** - To provide an overview of several key technologies used in manipulating, storing, and analyzing big data. - To understand the fundamentals of Hadoop. - To introduce tools that provide SQL-like access to unstructured data. ## MODULE I INTRODUCTION TO BIG DATA 6 Big Data and its Importance - Four V's of Big Data - Drivers for Big Data - Introduction to Big Data Analytics - Big Data Analytics applications. ## MODULE II BIG DATA TECHNOLOGIES 8 Hodoop's Parallel World - Data Discovery - Open source technology for Big Data Analytics - Cloud and Big Data -Predictive Analytics - Crowd Sourcing Analytics - Inter- and Trans-Firewall Analytics. #### MODULE III PROCESSING BIG DATA 7 Integrating disparate data stores - Mapping data to the programming framework-Connecting and extracting data from storage - Transforming data for processing- Subdividing data in preparation for Hadoop MapReduce. ## MODULE IV HADOOP MAPREDUCE 9 The Building Blocks of Hadoop MapReduce - Employing Hadoop MapReduce-Creating the components of Hadoop MapReduce jobs - Distributing data processing across server farms -Executing Hadoop MapReduce jobs - Monitoring the progress of job flows - Distinguishing Hadoop daemons - Investigating the Hadoop Distributed File System Selecting appropriate execution modes: local, pseudo-distributed, fully distributed. ## MODULE V ADVANCED ANALYTICS PLATFORM 7 Real-Time Architecture - Orchestration and Synthesis Using Analytics Engines-Discovery using Data at Rest - Implementation of Big Data Analytics - Big Data Convergence - Analytics Business Maturity Model. ## MODULE VI BIG DATA TOOLS AND TECHNIQUES Fundamentals of Pig - Fundamentals of HBase - Fundamentals of Hive - Introduction to NoSQL - Introduction to Mahout. 8 #### REFERENCES: - Michael Minelli, Michehe Chambers, Ambiga Dhiraj, "Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business", Wiley CIO Series, 2013. - 2. Arvind Sathi, "Big Data Analytics: Disruptive Technologies for Changing the Game", IBM Corporation, 2012. - 3. Tom White, "Hadoop: The Definitive Guide", 3rd Edition, O'Reilly, 2012. - 4. Kevin Roebuck, "Storing and Managing Big Data NoSql, Hadoop and more: High-Impact Strategies What You Need to Know", Tebbo, 2011. - 5. Bill Franks, "Taming The Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", 1st Edition, Wiley and SAS Business Series, 2012. # **OUTCOMES:** - categorize and Summarize Big Data. - manage Big Data and analyze Big Data. - apply tools and techniques to analyze Big Data. CSBX46 NoSQL DATABASE L T P C 3 0 0 3 ### **OBJECTIVES:** - To expose to Basics of NoSQL. - To study concepts relating to transaction management and data integrity. - To understand and work on NoSQL databases and to interface applications to them. ## MODULE I INTRODUCTION TO NoSQL 7 Definition - Need for NoSQL - Emergence and History of NoSQL - Aggregates-Key/Value Stores - Document Databases - Column Family Stores - Graph Databases - Schemaless Databases - Distribution Models. ## MODULE II MANAGING TRANSACTION AND DATA INTEGRITY 8 CRUD Operations - RDBMS and ACID - Distributed ACID Systems - Update Consistency - Read Consistency - Relaxing Consistency - CAP Theorem - Relaxing Durability- Quorums - Upholding CAP - Version Stamping. ## MODULE III STORAGE ARCHITECTURE AND IMPLEMENTATION 8 Key/Values Stores: Features, Use Cases and Usage Recommendation - Document Databases: Features, Use Cases, Usage Recommendation - Column Family Stores: Features, Use Cases, Usage Recommendation - Graph Databases: Features, Use Cases, Usage Recommendation. # MODULE IV NoSQL DATABASES 8 MongoDB - Redis - CouchDB - HBase - Apace Cassandra - Riak - Neo4j - PostgreSQL. # MODULE V INTERFACING AND INTERACTING WITH NoSQL 8 Storing Data In and Accessing Data from MongoDB - Querying MongoDB - Storing Data In and Accessing Data from Redis - Querying Redis - Storing Data In and Accessing Data from HBase - Querying HBase - Storing Data In and Accessing Data from-Apache Cassandra - Querying Apache Cassandra-Language Bindings for NoSQL Stores. #### MODULE VI ADVANCE TOPICS Google App Engine Data Store - Amazon SimpleDB - MapReduce - Hive - Benchmarking and Performance Tuning. **Total Hours: 45** 6 #### **TEXT BOOKS:** - Pramod J. Sadalage, Martin Fowler, "NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence", 1st Edition, Addison-Wesley Professional, 2012. - 2. Shashank Tiwari, "Professional NoSQL", 1st Edition, Wrox, 2011. - 3. Eric Redmond, Jim R. Wilson, "Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement", Pragmatic Bookshelf, 2012. #### **REFERENCES:** - 1. MC Brown, "Getting Started with CouchDB", O'Reilly Media, 2012. - 2. Eben Hewitt, "Cassandra: The Definitive Guide", O'Reilly Media, 2010. - 3. Kevin Roebuck, "Storing and Managing Big Data NoSql, Hadoop and More: High-Impact Strategies What You Need to Know", Tebbo, 2011. - 4. Eelco Plugge, Tim Hawkins, Peter Membrey, "The Definitive Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing", Apress, 2010. ## **OUTCOMES:** - understand basics of NoSQL. - design databases and work on NoSQL. - interface and interact with NoSQL. CSBX47 CYBER SECURITY L T P C 3 0 0 3 8 #### **OBJECTIVES:** - To understand the basic concepts related to security. - To study various security models and authentication techniques. - To give an exposure to security threats and evaluation mechanisms. ## MODULE I INTRODUCTION TO SECURITY FUNDAMENTALS 8 Introduction to security - Information security- Security triad: Confidential, Integrity, Availability -Focus of control - Security threats and attacks - Security management- Identification -Authentication - Authentication by passwords - Protecting passwords. ## MODULE II ACCESS CONTROL AND SECURITY LEVELS 7 Access control structures -Types of access control-Security levels and categories -Lattice diagram -Reference monitors -Security kernel - Hardware security features -Protecting memory. # MODULE III SECURITY MODELS AND CRYPTOGRAPHY 8 Security Models - Bell-LaPadula - Biba - Non-deducibility - Non-interference - Cryptography Basics- Cryptographic mechanisms - Digital signatures - Encryption - Digital Certificates. # MODULE IV ADVANCED SECURITY MECHANISMS Authentication in distributed systems - Key establishments and authentication-Kerberos -Public key infrastructures - Single sign-on-Network security -Protocol design principles ISO architecture- IP security - SSL/TLS - Firewalls-Intrusion detection. #### MODULE V SOFTWARE
AND DATABASE SECURITY 7 Software security - Database security - Memory management - Data and code-Relational databases - Access control in databases - Statistical database security-Unix Security-Windows Security. ## MODULE VI EMERGING SECURITY FOCUS Java Security - Mobile Security - GSM security - Wireless LAN security-Protection measures - Business risk analysis - Prevention, detection and response - Information classifications- Security evaluation. **Total Hours: 45** 7 ## **TEXT BOOK:** 1. Dieter Gollmann, "Computer Security", 3rd Edition, Wiley, 2011. # **REFERENCE:** 1. Edward Amoroso, "Cyber Security", 1st Edition, Silicon, 2006. ## **OUTCOMES:** - understand security principles, threats and attack techniques. - recommend appropriate authentication and access controls. - understand concepts pertaining to network security, operating system Security, software security and database security. ## CSBX48 VIRTUALIZATION TECHNIQUES L T P C 3 0 0 3 #### **OBJECTIVES:** - To learn the essentials need to build virtualization. - To understand managing virtualization. #### MODULE I INTRODUCTION 7 8 8 Virtualization Defined - Need of Virtualization - Moore's Law - Move to Virtualization: Five Step Process - Discovery, Virtualization, Hardware Maximization, Architectures, Managing Virtualization - Virtualizing Servers - Virtualizing Desktops - Virtualizing Applications. #### MODULE II VIRTUALIZATION INFRASTRUCTURE BUILDING Comprehensive Analysis - Planning and Preparation - Preparing Network Layer-Preparing Storage- Prepare Host Servers - Testing Environment. #### MODULE III SERVER VIRTUALIZATION AND VIRTUAL LOADS Choosing Server Virtualization Technology - Technology and Scenarios - Server Virtualization Decision Process - Virtualization Service Offering Structure - Resource Allocation Rules - Provisioning New Virtual Machines - Physical to Virtual Conversions. ## MODULE IV DESKTOP VIRTUALIZATION 8 Working with system stack - Desktop Management Issues - Available Products- Licensing - Potential scenarios and audiences - Centralized Desktop Virtualization Infrastructures. ## MODULE V APPLICATION VIRTUALIZATION 7 Application Management Issues - Redesigning Application Management - Benefits of AppV - Compare Application Virtualization Products - Key points on AppV - Integrating Application, Profile and Desktop Virtualization. ## MODULE VI VIRTUALIZATION SECURITY 7 Castle Defense System - Securing Resource Pools - Securing Virtual Service Offering - System Protection Strategies - Complete Recovery Strategies - Business Continuity Essentials - Business Continuity Strategies. **Total Hours: 45** # **TEXT BOOKS:** - 1. Nelson Ruest, Danielle Ruest, "Virtualization, A Beginner's Guide", McGraw-Hill Osborne Media, 2009. - 2. Matthew Portnoy, "Virtualization Essentials", 1st Edition, Sybex Publishers, 2012. ## **REFERENCES:** - 1. Ivanka Menken, "Virtualization The Complete Cornerstone Guide to Virtualization Best Practices", Emereo Pty Ltd, 2010. - 2. Daniel Kusnetzky, "Virtualization: A Manager's Guide", O'Reilly Media, 2011. ## **OUTCOMES:** - build virtualization infrastructure. - manage application and desktop virtualization issues. # ECB3101 #### DIGITAL SIGNAL PROCESSING L T P C 3 0 0 3 #### **OBJECTIVES** - To study various Fourier transforms and their application in Digital Filter design. - To study the design of FIR and IIR Digital filters. - To understand the concept of quantization noise and its effects in multi-rate signal processing - To study the architecture and features of various digital signal processors. #### MODULE I DISCRETE FOURIER TRANSFORM 8 8 Introduction to Discrete Fourier Transform, Direct computation of DFT, Properties of DFT, Efficient computation of DFT- FFT algorithms - Radix-2FFT algorithms - Decimation in Time, Decimation in Frequency algorithms, Computing Inverse DFT. #### MODULE II DESIGN AND IMPLEMENTATION OF IIR FILTERS Design of Low Pass Butterworth filters, analog to analog transformation - Analog to digital transformation, Bilinear transformation - Prewarping, Impulse invariant transformation. # MODULE III DESIGN AND IMPLEMENTATION OF FIR FILTERS 8 Amplitude and phase responses of FIR filters - symmetric and anti-symmetric impulse response, group delay and phase delay, Frequency response of FIR filters, Linear phase filters - Windowing techniques for design of Linear phase FIR filters - Rectangular, Hamming, Hanning and Blackmann windows, Frequency sampling techniques. #### MODULE IV FINITE WORD LENGTH EFFECTS 8 Representation of numbers, - Fixed point and binary floating point number representation - Comparison, errors due to truncation and rounding- off, Quantization noise - Derivation for quantization noise power at the input and output of a digital filter, Co-efficient quantization error - Product quantization error, Round-off effects in digital filters, Limit cycle oscillation - Over flow error-Signal scaling. ## MODULE V MULTIRATE DIGITAL SIGNAL PROCESSING Mathematical description of change of sampling rate - Interpolation and Decimation, Decimation by an integer factor, Interpolation by an integer factor, Sampling rate conversion by a rational factor, Time and frequency domain descriptions - Single, Multi stage, Polyphase structures - Quadrature Mirror Filter banks - Sub-band Coding, few applications using sub-band coding. #### MODULE VI DIGITAL SIGNAL PROCESSORS 5 8 Introduction to DSP architecture - Harvard and Von Neumann architecture - Pipelining - Dedicated MAC unit - Advanced addressing modes, Architecture of TMS320C5X and C54X, Overview of instruction set of TMS320C5X and C54X. **Total Hours: 45** #### **TEXT BOOKS:** - 1. John G Proakis, Dimtris G Manolakis, "Digital Signal Processing Principles, Algorithms and Application", 4th Edition, PHI, 2009. - 2. B.Venkataramani & M. Bhaskar, "Digital Signal Processor Architecture, Programming and Application", TMH 2002. ## **REFERENCES:** - 1. Alan V Oppenheim, Ronald W Schafer, John R Back, "Discrete Time Signal Processing", 2nd Edition, PHI, 2000. - 2. Avtar Singh, S.Srinivasan, "DSP Implementation using DSP microprocessor with Examples from TMS32C54XX", Thomson / Brooks cole Publishers, 2003. - 3. Johny R.Johnson, "Introduction to Digital Signal Processing", Prentice Hall, 2002. - 4. S.K.Mitra, "Digital Signal Processing- A Computer based approach", Tata McGraw-Hill, 2006. # **OUTCOMES:** On completion of this course the student will be familiar with the - digital signal processing methods. - designing & analyzing of digital filters. - architecture and features of DSP Processors. CSBX49 VIDEO ANALYTICS L T P C 3 0 0 3 #### **OBJECTIVES:** - To learn the basic research problems in camera networks. - To understand the recently developed methodologies. #### MODULE I INTRODUCTION 7 Introduction to video Analysis - Video Broadcasting- Video Archives- Security and Surveillance - Business and education - Bridging the Semantic Gap - Video Principles - MPEG Standards. #### MODULE II DETECTING SHOT BOUNDARIES IN VIDEO 7 Shot-Boundary Detection- Feature Extraction - Modeling Prior Information - Modeling Discriminative Information - Bayesian Approach to Decision Module Design. ## MODULE III SEMANTIC SEGMENTATION 8 Principle of Content Coherence - Video Parsing Based on the Content Coherence Principle - Content Similarity between Clips: Keyframe Comparisons, Video Mosaics, Accompanying text - Audio-Assisted Video Parsing: Sound classification, Analyzing dominant sound source. #### MODULE IV INDEXING AND ABSTRACTION FOR RETRIEVAL 8 Video Indexing - Content Modeling - Multi-Segment Video Indexing - Video Content Representation for Browsing - Content Preview. #### MODULE V AFFECTIVE VIDEO CONTENT ANALYSIS 8 Dimensional Approach-Affective Video Content Representation-Affective Video Content Modeling: Modeling Criteria - Feature Selection - Arousal Time Curve Approach- Valence Time Curve Approach - Applications. # MODULE VI CAMERA NETWORKS AND VIDEO ANALYSIS 7 Introduction to Camera Networks - Wide Area Tracking - Distributed Processing in Camera Networks - Object and Activity Recognition - Active Sensing. **Total Hours: 45** ## **TEXTBOOKS:** - 1. Alan Hanjalic, "Content-Based Analysis of Digital Video", Springer, 2004. - 2. Amit K. Roy-Chowdhury, Bi Song,"Camera Networks: The Acquisition and Analysis of Videos over Wide Areas", Morgan & Claypool Publishers, 2012. ## **REFERENCES:** - 1. Hubert Knoblauch, Hans-Georg Soeffner, Bernt Schnettler, Juergen Raab, "Video Analysis: Methodology and Methods", Peter Lang GmbH, 2009. - 2. Michael S. Lew, "Principles of Visual Information Retrieval", Springer; 2001. - 3. Alberto Amato, Vincenzo Di Lecce, Vincenzo Piuri, "Semantic Analysis and Understanding of Human Behavior in Video Streaming", Springer, 2013. ## **OUTCOMES:** Students who complete this course will be able to: - understand the major underlying theme in all the work presented is to take a network-centric view. - analyse the problems in camera networks. #### CSBX50 #### **MULTIMEDIA AND ANIMATION** L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the principles of animation and design for developing multimedia applications. - To adapt professional workflows into the design process of animation industry. - To effectively create and develop animated content for multimedia projects. - To develop interactive and animated multimedia content. #### MODULE I INTRODUCTION TO MULTIMEDIA 8 Definitions - Usage -Delivery - Virtual Reality - Text -Fonts and Faces -Text in Multimedia - Hypermedia - Hypertext. #### MODULE II IMAGE AND AUDIO FUNDAMENTALS 8 Images - Bitmaps -Vector Drawings - 3D Drawing and Rendering - Color Fundamentals - Digital Audio - MIDI - Audio File Formats - Adding Sound to Multimedia. # MODULE III VIDEO BASICS FUNDAMENTALS 7 Animation Principles - Techniques - File Formats - Analog Video - Digital Video-Codecs - Format Converters - Shooting and Editing Videos. # MODULE IV MULTIMEDIA REQUIREMENTS 8 Stages of Making Multimedia
-Intangibles - Multimedia Hardware Requirements-Multimedia Software Requirements - Authoring Systems - Acquiring Content-Internet and Multimedia. #### MODULE V MULTIMEDIA PROCESS 7 Multimedia Skills - Planning - Costing - Designing - Producing - Talent Acquisition - Delivery Mechanism - Designing for World Wide Web- Designing for Handheld Devices. ## MODULE VI MULTIMEDIA TOOLS 7 Macromedia Flash Introduction -Understanding the Interface - Drawing and Color Tools - Animation Basics- Shape Tweening - Filters and Blends -Motion Tweening - Timeline Effects - Action Scripts- Working with Text, Images, Videos - Integration. **Total Hours: 45** # **TEXT BOOKS:** - 1. Tay Vaughan, "Multimedia: Making It Work,8th Edition", McGraw Hill, 2010. - 2. James Gonzalez, "Macromedia Flash Professional 8 Hands-On Training", Peachpit Press, 2006. # **OUTCOMES:** Students who complete this course will be able to: - design and create animation using computerized animation tools. - design and create 2D and 3D animation models. - incorporate animation into digital content and multimedia products. #### **GENERAL ELECTIVES** # GEBX01 DISASTER MANAGEMENT L T P C #### **OBJECTIVES:** - To give an exposure to various environmental hazards and disasters: and various concepts and principles to manage disaster. - To give exposure to various environmental policies & programs in India for disaster management. #### MODULE I ENVIRONMENTAL HAZARDS 7 Environmental hazards, Environmental Disasters and Environmental stress-Meaning and concepts. Vulnerability and disaster preparedness. ## MODULE II NATURAL DISASTERS 7 Natural hazards and Disasters - Volcanic Eruption, Earthquakes, Tsunamis, Landslides, Cyclones, Lightning, Hailstorms, Floods, Droughts, Cold waves, Heat waves and Fire. #### MODULE III MAN-MADE DISASTERS 7 Man induced hazards & Disasters - Soil Erosion, Chemical hazards, Population Explosion. ## MODULE IV DISASTER MANAGEMENT 8 Emerging approaches in Disaster Management- Preparing hazard zonation maps, Predictability / forecasting & warning, Preparing disaster preparedness plan, Land use zoning, Communication. Disaster resistant house construction, Population reduction in vulnerable areas, Awareness - Rescue training for search & operation at national & regional level - Immediate relief, Assessment surveys, Political, Administrative, Social, Economic, Environmental Aspects. # MODULE V NATURAL DISASTER REDUCTION & MANAGEMENT 8 Provision of Immediate relief measures to disaster affected people, Prediction of Hazards & Disasters, Measures of adjustment to natural hazards. ## MODULE VI ENVIRONMENTAL POLICIES & PROGRAMMES IN INDIA Regional survey of Land Subsidence, Coastal Disaster, Cyclonic Disaster & Disaster in Hills with particular reference to India. Ecological planning for sustainability & sustainable development in India, Sustainable rural development: A Remedy to Disasters, Role of Panchayats in Disaster mitigations, Environmental policies & programmes in India- Institutions & National Centers for Natural Disaster reduction, Environmental Legislations in India, Awareness, Conservation Movement, Education & training. **Total Hours: 45** #### **REFERENCES:** - 1. Satender, "Disaster Management in Hills", Concept Publishing Co., New Delhi, 2003. - 2. Singh, R.B. (Ed.), "Environmental Geography", Heritage Publishers, New Delhi, 1990. - 3. Savinder Singh, "Environmental Geography", Prayag Pustak Bhawan, 1997. - 4. Kates, B.I. and White, G.F., "The Environment as Hazards", Oxford University Press, New York, 1978. - 5. Gupta, H.K., (Ed), "Disaster Management", University Press, India, 2003. - 6. Singh, R.B., "Space Technology for Disaster Mitigation in India (INCED)", University of Tokyo, 1994. - 7. Bhandani, R.K., "An overview on Natural & Manmade Disaster & their Reduction", IIPA Publication, CSIR, New Delhi, 1994. - 8. Gupta, M.C., "Manuals on Natural Disaster management in India", National Centre for Disaster Management, IIPA Publication, New Delhi, 2001. # **OUTCOMES:** At the end of the course, the students will - achieve sufficient knowledge on the disaster prevention strategy, early warning system, disaster preparedness, response and human resource development. - be familiar with the National Policy on Disaster Management. GEBX02 NANO TECHNOLOGY L T P C 3 0 0 3 #### **OBJECTIVES:** - To introduce the basic concepts of Nanoscience relevant to the field of engineering. - To provide an exposure about the importance of various synthesis method. - To enrich the knowledge of students in various characterisation techniques. ## MODULE I INTRODUCTION & CLASSIFICATION OF NANOMATERIALS 9 Definition - Origin of nanotechnology - Difference between bulk and nanomaterials- Top-down and bottom-up processes - Size dependent properties (magnetic, electronic,transport and optical), Classification based on dimensional property - 0D, 1D, 2D and 3D nanostructures – Kubo gap. #### MODULE II TYPES OF NANOMATERIALS 9 Metal oxides and metal nano particles - Ceramic nano particles - Semi conducting quantum dots - Core-shell quantum dots - Nanocomposites - Micellar nanoparticles. #### MODULE III PRODUCTION OF NANOPARTICLES 7 Sol-gel, hydrothermal, solvothermal, Plasma Arcing, Electro deposition, RF sputtering, Pulsed laser deposition, Chemical vapour, deposition. #### MODULE IV CARBON BASED NANOMATERIALS 6 Carbon nanotubes: Single wall nanotubes (SWNT), Multiwall nanotubes (MWNT) - structures-carbon nanofibre, Fullerenes-Application of carbon nanotubes and Fullerenes. # MODULE V NANOPHOTONICS 7 Light and nanotechnology, Interaction of light and nanotechnology, Nanoholes and photons, nanoparticles and nanostructures; Nanostructured polymers, Photonic Crystals, Solar cells. ## MODULE VI CHARACTERISATION TECHNIQUES 7 Basic principles of scanning Electron Microscopy (SEM), Atomic force microscopy (AFM), Scanning tunneling microscopy (STM), Scanning probe microscopy (SPM) and Transmission electron microscopy (TEM), Particle size analyzer, Luminescence techniques. **Total Hours: 45** #### **TEXTBOOKS:** - 1. Hari Singh Nalwa, "Handbook of Nanostructured Materials and Nanotechnology", Academic Press, 2000. - 2. Guozhong Cao, "Nanostructures and Nano materials-Synthesis, Properties and Applications", Imperial College Press (2011). - 3. Zhong Lin Wang, "Handbook of Nanophase and Nanomaterials (Vol 1 and II)", Springer, 2002. - 4. Mick Wilson, Kamali Kannangara, Geoff smith, "Nanotechnology: Basic Science and Emerging Technologies", Overseas press, 2005. #### **REFERENCES:** - 1. A. Nabok, "Organic and Inorganic Nanostructures", Artech House, 2005. - 2. C.Dupas, P.Houdy, M.Lahmani, Nanoscience: "Nanotechnologies and Nanophysics", Springer-Verlag Berlin Heidelberg, 2007. - 3. Mick Wilson, Kamali Kannangara, Michells Simmons and Burkhard Raguse, "Nano Technology – Basic Science and Emerging Technologies", 1st Edition, Overseas Press, New Delhi,2005. - 4. M.S. Ramachandra Rao, Shubra SinghH, "Nanoscience and Nanotechnology: Fundamentals to Frontiers", Wiley, 2013. #### **OUTCOMES:** At the end of this course, the students will be able to: - Apply the knowledge of different types of nanomaterials for various engineering applications. - Acquire the knowledge of various methods of production of nanomaterials. - Familiarize with various characterization techniques. #### **CONTROL SYSTEMS** L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the system modeling and to derive their transfer function. - To provide adequate knowledge of time response of systems and steady state error analysis. - To accord basic knowledge in obtaining the open loop and closed–loop frequency responses of Control systems. #### MODULE I BASIC CONCEPTS AND SYSTEM REPRESENTATION 8 Control System - Basic elements in control systems - Open and closed loop systems - Electrical analogy of mechanical and thermal systems - Transfer function - Block diagram reduction techniques - Signal flow graphs. #### MODULE II TIME RESPONSE ANALYSIS AND DESIGN Time response – Time domain specifications – Types of test input – First and Second order system - Type I and Type II System – Response - Error coefficients – Generalized error series – Steady state error – P, PI, PID modes of feedback control. ## MODULE III FREQUENCY RESPONSE ANALYSIS AND DESIGN 7 Performance specifications - correlation to time domain specifications - bode plots and polar plots – gain and phase margin – constant M and N circles and Nichols chart – all pass and non-minimum phase systems. ## MODULE IV STABILITY 8 8 Characteristics equation – Location of roots in s plane for stability – Routh Hurwitz criterion – Root locus construction – Effect of pole, zero addition – Gain margin and phase margin – Nyquist stability criterion. ## MODULE V COMPENSATOR DESIGN 8 Performance criteria – Lag, lead and lag-lead networks – Compensator design using bode plots and root locus technique. # MODULE VI CONTROL SYSTEM COMPONENTS AND APPLICATION OF CONTROL SYSTEMS Synchros – AC servomotors - DC Servo motors - Stepper motors - AC Tacho generator - DC Tacho generator - Typical applications of control system in industry. **Total Hours: 45** #### REFERENCES: - 1. K. Ogata, "Modern Control Engineering", 4th Edition, Pearson Education, New Delhi, 2003. - 2. I.J. Nagrath & M. Gopal, "Control Systems Engineering", New Age International Publishers, 2003. - 3. C.J.Chesmond, "Basic Control System Technology", Viva student edition, 1998. - 4. I.J.Nagarath and M.Gopal, "Control System Engineering", Wiley Eastern Ltd., Reprint, 1995. - 5. R.C.Dorf and R.H.Bishop, "Modern Control Systems", Addison-Wesley (MATLAB Reference), 1995. ## **OUTCOMES:** At the end of the course, the student is expected to possess knowledge and achieve skills on the following: - Proper understanding of basics of Control Systems. - Ability and skill to carry-out time domain and frequency domain analysis. - Capable of determining stability of the system using Routh Hurwitz criterion, Root locus and
Nyquist criterion. - Ability to design lag, lead and lag lead compensator networks. #### GEBX04 GREEN DESIGN AND SUSTAINABILITY L T P C 3 0 0 3 #### **OBJECTIVE:** • To impart knowledge to face challenges, the technology poses for water, energy, and climate change by implementing sustainable design. #### MODULE I CONCEPTS OF SUSTAINABLE DEVELOPMENT 7 Objectives of Sustainable Development - Need for sustainable development-Environment and development linkages - Globalisation and environment-Population, poverty and pollution- global, regional and local environment issues-Green house gases and climate change. # MODULE II SUSTAINABLE DEVELOPMENT OF SOCIO ECONOMIC SYSTEMS 8 Demographic dynamics of sustainability- Policies for socio economic development- Sustainable Development through trade- Economic growth-Action Plan for implementing sustainable development- Sustainable Energy and Agriculture. #### MODULE III FRAME WORK FOR ACHIEVING SUSTAINBAILITY 7 Sustainability indicators- Hurdles to sustainability- Business and Industry – Science and Technology for Sustainable Development- Performance indicators of sustainability and assessment mechanism- Constraints and barriers of Sustainable Development. #### MODULE IV GREEN BUILDINGS 8 Introduction to Green Building- Energy- Water- Materials and Resources - Sustainable Sites and Land Use - Indoor Environmental Quality- Life Cycle Assessment- Energy, water and materials efficiency. # MODULE V ENERGY CONSERVATION AND EFFICIENCY 7 Energy savings- Energy Audit- Requirements- Benefits of Energy conservation-Energy conservation measures for buildings- Energy wastage- impact to the environment. #### MODULE VI GREEN BUILDINGS DESIGN Elements of Green Buildings Design-Foundation, Electrical, Plumbing, flooring, Decking, roofing, insulation, wall coverings, windows, siding, doors and finishing, LEED certification for Green Buildings, Green Buildings for sustainability. **Total Hours: 45** 8 ## **TEXT BOOK:** 1. Kirby, J., Okeefe, P., and Timber lake, "Sustainable Development", Earthscan Publication, London, 1995. #### REFERENCE: 1. Charles Kibert, J., "Sustainable Construction: Green Building Design and Delivery", 2nd Edition, John Wiley and sons, 2007. #### **OUTCOMES:** At the end of the course, the students will be able to - explain the relationship between sustainability and emergence of green building practices. - address the economic, environmental, and social concerns. #### KNOWLEDGE MANAGEMENT L T P C 3 0 0 3 #### **OBJECTIVES:** The course - Focuses on positioning knowledge as a valuable commodity, embedded in products and in the tacit knowledge of highly mobile individual employees. - Presents KM as a deliberate and systematic approach to cultivating and sharing an organization's knowledge base. - Brings out the paradigm in terms of information technology and intellectual capital. ## MODULE I KNOWLEDGE MANAGEMENT 6 KM Myths – KM Life Cycle – Understanding Knowledge – Knowledge, intelligence – Experience – Common Sense – Cognition and KM – Types of Knowledge – History of Knowledge Management - From Physical assets to Knowledge Assets – Expert knowledge – Human Thinking and Learning. ## MODULE II KNOWLEDGE MANAGEMENT SYSTEMS AND MODELS 9 Challenges in Building KM Systems – Conventional Vs KM System Life Cycle (KMSLS) – Knowledge Creation and Knowledge Architecture – KM cycle - Different variants of KM cycle - KM models - Implications and practical implementations. # MODULE III CAPTURING KNOWLEDGE AND SHARING Tacit knowledge capture - Explicit knowledge codification - Knowledge taxonomies - Knowledge sharing - Communities - Obstacles to knowledge capture and sharing. ## MODULE IV KNOWLEDGE MANAGEMENT TOOLS 9 9 KM System tools – Neural Network – Association Rules – Classification Trees – Data Mining and Business Intelligence – Knowledge capture and creation tools - Content creation tools - Data mining and knowledge discovery - Content management tools - Knowledge sharing and dissemination tools - Group ware and Collaboration tools - Intelligent filtering tools. #### MODULE V KNOWLEDGE APPLICATION 6 KM at individual level - Knowledge workers - Task analysis and modeling - Knowledge application at group and organizational levels - Knowledge repositories - Knowledge reuse - Case study: e-learning. ## MODULE VI VALUE OF KNOWLEDGE MANAGEMENT 6 KM return on investment and metrics - Benchmarking method - Balanced scorecard method - House of quality method - Results based assessment method - Measuring success - Future challenges for KM. **Total Hours:45** ## **TEXT BOOKS:** - 1. Elias M. Awad, Hassan M. Ghaziri, "Knowledge Management", Prentice Hall, 2nd Edition, 2010. - 2. Jay Liebowitz, "Handbooks on Knowledge Management", 2nd Edition, 2012. - 3. Irma Becerra-Fernandez, Rajiv Sabherwal, "Knowledge Management: Systems and Processes", 2010. #### **OUTCOMES:** Students who complete this course will be able to - describe the fundamental concepts in the study of knowledge and its creation, acquisition, representation, dissemination, use and re-use, and management. - explains the core concepts, methods, techniques, and tools for computer support of knowledge management. - critically evaluate current trends in knowledge management and apply it for elearning # GEBX06 APPROPRIATE TECHNOLOGY L T P C 3 0 0 3 #### **OBJECTIVE:** To impart students knowledge about the basics and applications of various appropriate technologies in the field of civil engineering. #### MODULE I BASICS CONCEPTS 9 Back ground, Tools, Choices and Implications, Appropriate Technology Movement (an overview) - Basic design process, basic financial analysis-discounted cash flow, and energy fundamentals. # MODULE II APPROPRIATE TECHNOLOGY WITH REFERENCE TO BUILDING DESIGN 9 Appropriate Building Materials, Appropriate Energy Saving Techniques, Water Conservation (Indoor), Rain Water Harvesting. # MODULE III WATER, HEALTH AND SANITATION MANAGEMENT 9 Water Storage: Designing Dams and Pipelines, Appropriate Selection for Sanitation Technique, Sewerage, Communal Health and Waste Water Recycling. # MODULE IV WASTE MANAGEMENT 9 Types of Waste - Sources - Collections and On-Site Processing - Transferring Stations - Disposal Systems - Recycling. # MODULE V ENERGY EFFICIENT TECHNIQUES 9 Green building concepts-renewable energy sources- Solar – Steam and wind-Biofuels - Biogas – Electricity. # MODULE VI TECHNOLOGY POLICY 9 Government Policies- Energy Policy-Appropriate technology Development Centre-its function and responsibilities-Building policies-Case Studies. **Total Hours: 45** # **TEXT BOOKS:** - 1. Barrett Hazeltine and Christopher Bull, "Appropriate Technology: Tools Choices and Implications", Academic Press, Orlando, USA, 1998. - 2. Ken Darrow and Mike Saxenian, "Appropriate Technology Source Book: A Guide to Practical Books for Village and Small Community Technology", Stanford, 1986. # **REFERENCES:** - 1. Richard Heeks, "Technology and Developing Countries: Practical Applications Theoretical Issues", 1995. - 2. John Pickford, "The Worth of Water: Technical Briefs on Health, Water and Sanitation", Intermediate Technology Publications, 1998. # **OUTCOME:** • At the end of the course, the students will be able to use suitable technologies for various conditions for sustainable development. #### SYSTEM ANALYSIS AND DESIGN L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the basic principles of systems engineering - To understand the systems engineering methodology - To provide a systems viewpoint # MODULE I INTERDICTION TO SYSTEMS ENGINEERING 8 Concept of Systems Engineering – Origin – Systems Approach – Advantages of systems approach – Examples. The building blocks of modern systems – Systems and environment – Interfaces – Complexity of Modern Systems. ## MODULE II SYSTEM DEVELOPMENT PROCESS AND MANAGEMENT 8 System life cycle – the systems engineering method – Role of Testing – Management of system development – Risk Management – Organisation. # MODULE III CONCEPT DEVELOPMENT 8 Need Analysis – Concept Exploration – Performance requirement and validation – Concept selection and validation – systems architecture – Decision making. #### MODULE IV ESTABLISHING ENGINEERING SYSTEMS 8 Risk Analysis – Risk Mitigation –System performance Analysis – Simulation Techniques in System Analysis – Validation Methods.. #### MODULE V DECISION SUPPORT TOOLS IN SYSTEMS ENGINEERING 7 Analytical decision support – Statistical influences on system design – System performance analysis – System Reliability, Availability and Maintainability (RAM) – Analysis of Alternatives. # **MODULE VI CASE STUDIES** 6 Case studies in Software Systems Engineering – Systems for Product Design - Manufacturing Systems. **Total Hours: 45** ## **REFERENCES:** - Charles S. Wasson, "System Analysis, Design, and Development: Concepts, Principles, and Practices", Wiley Series in Systems Engineering and Management, 2006. - 2. Kossiakoff Alexander and William N. Sweet A, "Systems Engineering: Principles And Practice", Wiley Student Edition, 2009. ## **OUTCOMES:** At the end of the course the student will have the - ability to have systems of view of problems and issues at hand. - ability to comprehend systems in their totality and specific. - ability to design, build and evaluate simple systems for industrial requirement. - ability to analyze systems and strengthen them for performance enhancement. #### GEBX08 VALUE ANALYSIS AND ENGINEERING L T P C 3 0 0 3 #### **OBJECTIVES:** - To get acquainted with value analysis and engineering tool for productivity improvement. - To understand and analyze the theory and methodology of Value Engineering. #### MODULE I VALUE ENGINEERING BASICS 8 Origin of Value Engineering, Meaning of value, Definition of Value Engineering and Value analysis, Difference between Value analysis and Value Engineering, Types of Value, function - Basic and Secondary functions, concept of cost and worth, creativity In Value Engineering. #### MODULE II
VALUE ENGINEERING JOB PLAN AND PROCESS 6 Seven phases of job plan, FAST Diagram as Value Engineering Tool, Behavioural and organizational aspects of Value Engineering, Ten principles of Value analysis, Benefits of Value Engineering. #### MODULE III ORIENTATION AND INFORMATION PHASES 8 Launching Value Engineering project work - Objectives and Targets - VE Project work: a time-bound programme - Projects and Teams - Time Schedule - Coordination - Consultant. Technical data - Marketing related information - Competition profile - Cost data - Materials Management related information - Quality related information - Manufacturing data. ## MODULE IV FUNCTION ANALYSIS AND CREATIVE PHASES 9 Objectives - Function definition - Classification of functions - Higher level functions - Function - Cost - Function - Worth - Value Gap - Value index - How to carry out Function Analysis? - Fast Diagraming - Cost Modelling. Creativity - How to improve creativity of an individual? - How to promote creativity in the organisation? - Obstacles to Creativity - Mental road blocks - Creativity killer phrases. Positive thinking - Ideas stimulators - Creativity techniques - Brainstorming. # MODULE V EVALUATION, INVESTIGATION AND RECOMMENDATION 6 Paired comparison and Evaluation Matrix techniques - Criteria for selection of VE solutions. Design – Materials – Quality – Marketing – Manufacturing - Preview session. The report - presentation. ## MODULE VI IMPLEMENTATION PHASE AND CASE STUDIES 8 Design department - Materials department - Production Planning & Control - Quality Control - Manufacturing - Marketing - Need for co-ordinated teams - The Action Plan. Value Engineering case studies. **Total Hours: 45** ## **TEXTBOOKS:** - 1. Mudge, Arthur E. "Value Engineering- A systematic approach", McGraw Hill, New York, 2000. - 2. Kumar S, Singh R K and Jha J K (Ed), "Value Engineering", Narosa Publishing House, 2005. #### **REFERENCES:** - 1. Park RJ, "Value Engineering: A Plan for Invention", St.Lucie Press, New York, 1999 - 2. Lawrence, D.M., "Techniques of Value Analysis and Engineering", McGraw Hill 1988. - 3. George, E.D., "Engineering Design: a Material and Processing Approach", McGraw Hill, 1991. - 4. Heller, D.E., "Value Management, Value Engineering and Cost Reduction", Addison Wesley, 1988. # **OUTCOME:** • The student will be able to realize the value of products, processes and implement value analysis to achieve productivity improvement. L T P C 3 0 0 3 #### **OBJECTIVES:** Introduce methods of optimization to engineering students, including linear programming, network flow algorithms, integer programming, interior point methods, quadratic programming, nonlinear programming, and heuristic methods. **OPTIMIZATION TECHNIQUES** The goal is to maintain a balance between theory, numerical computation, problem setup for solution by optimization techniques, and applications to engineering systems. ## MODULE I INTRODUCTION 7 Overview of Optimization techniques for Civil Engineering Problems - Introduction to methods of optimization - Classification of Optimization problems - optimality and convexity - General optimization algorithm - necessary and sufficient conditions for optimality. ## MODULE II LINEAR PROGRAMMING 8 Introduction to linear programming - a geometric perspective - Standard form in linear programming; basic solutions; fundamental theorem of linear programming - Simplex Algorithm for Solving Linear Programs - Duality; complementary slackness; economic interpretation of the dual; ## MODULE III DYNAMIC PROGRAMMING 8 Sequential optimization; Representation of multistage decision process; Types of multistage decision problems; Concept of sub optimization and the principle of optimality; Recursive equations – Forward and backward recursions; Computational procedure in dynamic programming (DP); Discrete versus continuous dynamic programming; Multiple state variables; curse of dimensionality in DP. #### MODULE IV APPLICATIONS 8 Regression modeling in engineering; industrial blending problems; dynamic optimal control of engineering systems; optimal estimation in environmental engineering - Water resources; production planning in industrial engineering; transportation problem - Heuristic optimization methods: genetic algorithms; ecological engineering application; Minimum cost network flow algorithms; out-of-kilter method; primal-dual methods; Dynamic Programming Applications - Water allocation as a sequential process - Capacity expansion and Reservoir operation. # MODULE V INTEGER PROGRAMMING 8 Integer programming - applications in optimal irrigation scheduling in agricultural engineering - Interior point optimization methods - affine scaling method. # MODULE VI NON-LINEAR PROGRAMMING 6 Non-linear programming - Kuhn-Tucker conditions for constrained nonlinear programming problems; necessary and sufficient conditions; quadratic programming; applications. **Total Hours: 45** #### **REFERENCES:** - 1. Taha, H.A., "Operations Research An Introduction", 9th Edition, Pearson Prentice Hall, 2011. - 2. Winston.W.L. "Operations Research", 4th Edition, Thomson Brooks/Cole, 2003. - 3. Kreyszig .E., "Advanced Engineering Mathematics",10th Edition, John Wiley and Sons (Asia) Pvt Ltd., Singapore, 2001. # **OUTCOMES:** At the end of the course, the students will be able to understand - basic theoretical principles in optimization. - formulation of optimization models. - solution methods in optimization. - methods of sensitivity analysis and post processing of results. - applications to a wide range of engineering problems. # GEBX10 ENGINEERING SYSTEM MODELLING L T P C AND SIMULATION 3 0 0 3 #### **OBJECTIVES:** - To learn the concepts, techniques, tools for modeling and simulation systems and environments through the use of computers. - To study the various aspects of discrete dynamic, stochastic systems modeling and conducting experiments with those models on a computer. # MODULE I INTRODUCTION 6 Systems – Modelling – types – systems components – Steps in model building-Simulation Algorithms and Heuristics; Simulation Languages. ## MODULE II RANDOM NUMBERS / VARIATES 7 Random numbers – methods of generation – random variates for standard distributions like uniform, exponential, Poisson, binomial, normal etc. – Testing of Random variates – Monte Carlo Simulation. #### MODULE III MODELLING PROCESS 7 Primitive Models: Establishing relationships via physical laws; Establishing relationships via curve fitting; Parameters estimation problems; Elementary state transition models. #### MODULE IV DESIGN OF SIMULATION EXPERIMENTS 9 Steps on Design of Simulation Experiments – Development of models using of Highlevel language for systems like Queuing, Inventory, Replacement, Production etc., – Model validation and verification, Output analysis. # MODULE V SIMULATION LANGUAGES 10 Need for simulation Languages – Comparisons & Selection of Languages – GPSSARENA- EXTEND – Study of any one of the languages. # MODULE VI CASE STUDIES USING SIMULATION LANGUAGES 6 **Total Hours: 45** ## **REFERENCES:** - 1. Law, A.M., & W.D. Kelton, "Simulation Modelling and Analysis", McGraw Hill, Singapore, 2000. - 2. Harrel, C.R., et. al., "System Improvement Using Simulation", 3rd Edition, JMI Consulting Group and ProModel Corporation, 1995. - 3. Harrel, C.R. & T. Kerim, "Simulation Made Easy, A Manager's Guide", IIE Press, 1995. - 4. Geoffrey Gordon, "Systems Simulation", Prentice Hall, 2002. - 5. David Kelton, Rondall P Sadowski, David T Sturrock, "Simulation with Arena", Mc Graw Hill, 2004. ## **OUTCOMES:** The student should be able to - Model and simulate systems and environments through the use of computers. - Conduct experiments with discrete dynamic, stochastic system models on a computer. #### **SUPPLY CHAIN MANAGEMENT** L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the various decision phases in a supply chain - To be aware of the Supply Chain and its drivers - To design Supply Chain Network - To build a aggregate plan in supply chain - To understand Sourcing Decisions in Supply Chain - To comprehend the influence of Information technology in Supply Chain #### MODULE I INTRODUCTION TO SUPPLY CHAIN 9 Understanding Supply Chain - Decision phases - Supply chain performance - Competitive and supply chain strategies - Achieving strategic fit - Expanding strategic scope #### MODULE II SUPPLY CHAIN DRIVERS AND DESIGN 9 Drivers of supply chain performance – Designing distribution network - Network Design in the Supply Chain - Network design in Uncertain Environment # MODULE III AGGREGATE PLANNING AND MANAGING SUPPLY, DEMAND AND INVENTORY 9 Aggregate Planning in a Supply chain: role - Managing Supply - Managing Demand in Supply Chain – Cycle and Safety inventory in supply chain – Level of product availability. ## MODULE IV SOURCING AND TRANSPORTATION 9 9 Sourcing decision in supply chain - Third and Fourth – Party Logistics providers - Supplier scoring and assessment - Transportation in a Supply Chain – Risk and Trade-offs in transportation design. # MODULE V INFORMATION TECHNOLOGY IN A SUPPLY CHAIN Information technology in a supply chain – CRM, ISCM, SRM in supply chain - Over view of recent trends in Supply Chain: e-SRM, e-LRM, e-SCM. **Total Hours: 45** #### **REFERENCES:** - 1. Sunil Chopra and Peter Meindl, "Supply Chain Management-Strategy Planning and Operation", Pearson Education, 4th Indian Reprint, 2010. - 2. Jananth Shah "Supply Chain Management Text and Cases" Pearson Education, 2008. - 3. Altekar Rahul V, "Supply Chain Management-Concept and Cases", Prentice Hall India, 2005. - 4. Monczka et al., "Purchasing and Supply Chain Management", Thomson Learning, 2nd Edition, 2nd Reprint, 2002. ## **OUTCOMES:** - After taking up the course the student will be able to brighten his prospects of taking up a career on supply chain management. - The student decision making capability specific to supply chain issues in an industry is improved. - The student can plan a well
defined execution of supply chain strategy in companies. - The student will be able to design a optimal distribution network as per the demands of the industry. - The student can also determine the most favorable transportation plan for a company. - The student will also be able to bring in company from paper environment to paperless environment. #### **TOTAL QUALITY MANAGEMENT** L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the various principles, practices of TQM to achieve quality. - To get acquainted with the various statistical tools and approaches for quality control and continuous improvement. - To get aware of the importance of ISO and Quality Systems. ## MODULE I INTRODUCTION 8 Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs - Analysis Techniques for Quality Costs, Basic concepts of Total Quality Management, Historical Review, Principles of TQM, Leadership – Concepts, Role of Senior Management, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation. ## MODULE II TQM PRINCIPLES 7 Customer satisfaction – Customer Perception of Quality, Customer Complaints, Service Quality, Customer Retention, Employee Involvement – Motivation, Empowerment, Teams, Recognition and Reward, Performance Appraisal, Benefits. # MODULE III TQM IMPROVEMENT PROCESS 8 Continuous Process Improvement – Juran Trilogy, PDSA Cycle, 5S, Kaizen, Supplier Partnership – Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development, Performance Measures – Basic Concepts, Strategy, Performance Measure. ## MODULE IV STATISTICAL PROCESS CONTROL (SPC) 8 The seven tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma, New seven Management tools. ## MODULE V TQM TOOLS 7 Benchmarking - Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QFD) – House of Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM) – Concept, Improvement Needs, FMEA – Stages of FMEA. ## MODULE VI QUALITY SYSTEMS 7 Need for ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality System – Elements, Implementation of Quality System, Documentation, Quality Auditing, TS 16949, ISO 14000 – Concept, Requirements and Benefits. **Total Hours: 45** ## **TEXT BOOK:** 1. Dale H.Besterfiled, et al., "Total Quality Management", Pearson Education, Inc. 2003. #### **REFERENCES:** - 1. James R.Evans & William M.Lidsay, "The Management and Control of Quality", 5th Edition, South-Western (Thomson Learning), 2002. - 2. Feigenbaum.A.V., "Total Quality Management", McGraw-Hill, 1991. - 3. Oakland.J.S., "Total Quality Management", Butterworth Hcinemann Ltd., Oxford, 1989. - 4. Narayana V. and Sreenivasan. N.S., "Quality Management Concepts and Tasks", New Age International, 1996. - 5. Zeiri, "Total Quality Management for Engineers", Wood Head Publishers, 1991. # **OUTCOMES:** The student should be able to - apply the various statistical tools and approaches for Quality control. - achieve continuous process improvement through TQM. GEBX13 ENERGY STUDIES L T P C 3 0 0 3 #### **OBJECTIVES:** - To learn the growing demand, supply of energy on global and national levels and the need for renewable energy promotion. - To understand the basic need for energy conservation and waste heat recovery. - To learn the important aspects of energy audit and management. - To get acquainted with the global environmental issues and carbon credits. #### MODULE I GLOBAL AND NATIONAL ENERGY SCENARIO 7 Role of energy in economic development, various energy resources - overall energy demand and availability- Energy consumption in various sectors and its changing pattern - Exponential increase in energy consumption and projected future demands. Need for renewable energy. #### MODULE II SOLAR ENERGY 8 8 Solar Radiation – Measurements of Solar Radiation - Flat Plate and Concentrating Collectors – Solar direct Thermal Applications – Solar thermal Power Generation - Fundamentals of Solar Photo Voltaic Conversion – Solar Cells – Solar PV Power Generation – Solar PV Applications. #### MODULE III OTHER RENEWABLE ENERGY SOURCES Power from wind – wind turbine working and types, solar thermal power plants – low medium and high power generation, power from wave, tidal, geothermal sources, OTEC system. MHD power plants – working, types, merits and demerits. Energy from biomass. # MODULE IV COGENERATION, WASTE HEAT RECOVERY AND COMBINED CYCLE PLANTS 8 Cogeneration principles- topping and bottoming cycles, role in process industries. Energy from wastes- waste heat recovery- heat recovery from industrial processes. Heat exchange systems – recuperative and regenerative heat exchangers – commercially available waste heat recovery devices. Combined cycle plants – concept, need and advantages, different combinations and practical scope. ## MODULE V ENERGY CONSERVATION AND MANAGEMENT Need for energy conservation – use of energy efficient equipments. Energy conservation opportunities - in educational institutions, residential, transport, municipal, industrial and commercial sectors – concept of green building. Energy audit in industries – need, principle and advantages. Case studies. # MODULE VI GLOBAL ENRGY ISSUES AND CARBON CREDITS 7 Energy crisis, fossil consumption and its impact on environmental climate change. Energy treaties – Montreal and Kyoto protocols - Transition from carbon rich and nuclear to carbon free technologies, carbon foot print – credits – clean development mechanism. **Total Hours: 45** # **TEXT BOOKS:** - 1. S.S. Rao and B.B. Parulekar, "Energy Technology", 3rd Edition, Khanna Publishers, New Delhi, 2011. - 2. O. Callaghn. P.W., "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981. #### **REFERENCES:** - 1. G.D. Rai, "Non Conventional Energy Sources", Khanna Publishers, New Delhi, 2011. - 2. Archie, W Culp. "Principles of Energy Conservation", McGraw Hill, 1991. - 3. D Patrick and S W Fardo, "Energy Management and Conservation", PHI,1990 - P. O'Callaghan: "Energy Management", McGraw Hill Book Company, 1993. - 5. Kenney, W. F., "Energy Conservation in Process Industries", Academic Press, 1983. ## **OUTCOMES:** The student should be able to - Realize the global and national energy status and need to switch over to renewable energy technology. - Energy audit and suggest methodologies for energy savings. - Utilize the available resources in an optimal way. - Concern about the global environmental issues & promote carbon credits. GEBX14 ROBOTICS L T P C 3 0 0 3 #### **OBJECTIVE:** To learn about the robots, various components, of Robots, programming and their applications. #### MODULE I INTRODUCTION 8 Definition- Need - Application, Types of robots - Classifications - Configuration, work volume, control loops, controls and intelligence- basic parts - functions - specifications. of robot, degrees of freedoms, end effectors - types, selection ## MODULE II ROBOT DRIVES AND CONTROL 8 Controlling the Robot motion – Position and velocity sensing devices – Design of drive systems – Hydraulic and Pneumatic drives – Linear and rotary actuators and control valves – Electro hydraulic servo valves, electric drives – Motors – Designing of end effectors – Vacuum, magnetic and air operated grippers. #### MODULE III ROBOT SENSORS 8 Transducers and Sensors – Tactile sensor – Proximity and range sensors – Sensing joint forces – Robotic vision system – Image Representation - Image Grabbing –Image processing and analysis – Edge Enhancement – Contrast Stretching – Band Rationing - Image segmentation – Pattern recognition – Training of vision system. ## MODULE IV ROBOT PROGRAMMING & AI TECHNIQUES 7 Types of Programming – Teach pendant programming – Basic concepts in AI techniques – Concept of knowledge representations – Expert system and its components. # MODULE V ROBOTIC WORK CELLS AND APPLICATIONS OF ROBOTS 7 Robotic cell layouts – Inter locks – Humanoid robots – Micro robots – Application of robots in surgery, Manufacturing industries, space and underwater. # MODULE VI ROBOT KINEMATICS AND DYNAMICS 7 Forward and inverse Kinematic equations, Denvit – Hartenbers representations Fundamental problems with D-H representation, differential motion and velocity of frames - Dynamic equations for sing, double and multiple DOF robots – static force analysis of robots. **Total Hours: 45** ## **REFERENCES:** - 1. Yoram Koren," Robotics for Engineers", Mc Graw-Hill, 1987. - 2. Kozyrey, Yu, "Industrial Robots", MIR Publishers Moscow, 1985. - 3. Richard. D, Klafter, Thomas, A, Chmielewski, Michael Negin, "Robotics Engineering An Integrated Approach", Prentice-Hall of India Pvt. Ltd., 1984. - 4. Deb, S.R. "Robotics Technology and Flexible Automation", Tata Mc Graw-Hill, 1994. - 5. Mikell, P. Groover, Mitchell Weis, Roger, N. Nagel, Nicholas G. Odrey, "Industrial Robotics Technology, Programming and Applications", Mc Graw-Hill, Int. 1986. - 6. Timothy Jordanides et al,"Expert Systems and Robotics", Springer –Verlag, New York, May 1991. #### **OUTCOMES:** Students would be able to - Understand about the robots, its various components. - Design Robots for industrial applications. - Do programming for robots and apply them in real time applications. GEBX15 CYBER SECURITY L T P C 3 0 0 3 #### **OBJECTIVES:** - To understand the basics of Cyber Security Standards and Laws. - To know the legal, ethical and professional issues in Cyber security. - To understand Cyber Frauds and Abuse and its Security Measures. - To know the technological aspects of Cyber Security. # MODULE I FUNDAMENTALS OF CYBER SECURITY 8 Security problem in computing – Cryptography Basics – History of Encryption – Modern Methods – Legitimate versus Fraudulent Encryption methods – Encryption used in Internet. #### MODULE II TYPES OF THREATS
AND SECURITY MEASURES 8 Security Programs – Non-malicious program Errors – Virus and other Malicious Code – Targeted Malicious Code – Control against program threats – Web Attacks – DOS – Online Security Resources. ## MODULE III APPLICATION SECURITY 8 Introduction to Databases - Database Security Requirements - Reliability & Integrity - Multilevel Databases - E-Mail and Internet Security - SQL Injection - Cross Site Scripting - Local File Inclusion - Intrusion Detection Software"s. #### MODULE IV PHYSICAL SECURITY AND FORENSICS 7 Firewalls – Benefits and Limitations – Firewall Types - Components – Server Room Design and Temperature Maintenance – Cyber Terrorism and Military Operation Attacks- Introduction to Forensics – Finding evidence on PC and Evidence on System Logs – Windows and Linux logs. ## MODULE V CYBER STALKING & FRAUD 7 Introduction – Internet Frauds – Auction Frauds – Identity theft – Phishing – Pharming- Cyber Stalking – Laws about Internet Fraud – Protecting against Cyber Crime – Secure Browser settings – Industry Espionage. # MODULE VI CYBER SECURITY STANDARDS AND POLICIES Introduction— ISO 27001— ISO 27002 - PCI DSS — Compliance - IT ACT — Copyright ACT, Patents. Definition of Policy — Types- User Policies-Administrative Policies — Access control — Developmental Policies. **Total Hours: 45** 7 #### **TEXT BOOK:** 1. Chuck Easttom, "Computer Security Fundamentals", 2nd Edition, Pearson Education, 2012. ## **REFERENCES:** - 1. Charles B. Pfleeger, Shari Lawrence Pfleeger, "Security in Computing", 3rd Edition, Pearson Education, 2003. - 2. William Stallings, "Cryptography and Network Security Principles and Practices", 3rd Edition, Pearson Education, 2003. - 3. Atul Kahate, "Cryptography and Network Security", Tata McGraw Hill, 2000. ## **OUTCOMES:** Upon completion of this course, attendees should be able to satisfy the critical need for ensuring Cyber Security in Organizations. - The students attending this course will be able to analyse the attacks and threats. - They can also provide solutions with Intrusion Detection systems and Softwares. - They will have knowledge about Cyber Frauds and Cyber Laws. #### **USABILITY ENGINEERING** 3 0 0 3 #### **OBJECTIVES:** The objective of this course is - To understand the emerging concept of usability, requirements gathering and analysis. - To learn about human computer interaction with the help of interfaces that has high usability. #### MODULE I INTRODUCTION 6 Cost Savings – Usability Now – Usability Slogans – Discount Usability Engineering – Usability – Definition – Example – Trade-offs – Categories – Interaction Design – Understanding & Conceptualizing Interaction – Cognitive Aspects. ## MODULE II USER INTERFACES 8 Generation of User Interfaces – Batch Systems, Line Oriented Interfaces, Full Screen Interfaces, Graphical User Interfaces, Next Generation Interfaces, Long Term Trends – Usability Engineering Life Cycle – Interfaces – Data Gathering – Data Analysis Interpretation and Presentation. # **MODULE III INTERACTION DESIGN** 8 Process of Interaction Design - Establishing Requirements – Design, Prototyping and Construction - Evaluation and Framework. #### MODULE IV USABILITY TESTING 8 Usability Heuristics – Simple and Natural Dialogue, Users' Language, Memory Load, Consistency, Feedback, Clearly Marked Exits, Shortcuts, Error Messages, Prevent Errors, Documentation, Heuristic Evaluation – Usability Testing - Test Goals and Test Plans, Getting Test Users, Choosing Experimenters, Ethical Aspects, Test Tasks, Stages of a Test, Performance Measurement, Thinking Aloud, Usability Laboratories. # MODULE V USABILITY ASSESSMENT METHODS 8 Observation, Questionnaires and Interviews, Focus Groups, Logging Actual Use, User Feedback, Usability Methods – Interface Standards - National, International and Vendor Standards, Producing Usable In-House Standards #### MODULE VI USER INTERFACES 7 International Graphical Interfaces, International Usability Engineering, Guidelines for Internationalization, Resource Separation, Multilocale Interfaces – Future Developments – Case Study. **Total Hours: 45** #### **TEXT BOOKS:** - 1. Yvonne Rogers, Helen Sharp, Jenny Preece, "Interaction Design: Beyond Human Computer Interaction", John Wiley & Sons, 3rd Edition, 2011 (Module I, II, III). - 2. Jakob Nielsen, "Usability Engineering", Morgan Kaufmann Academic Press, 1994. (Module I VI). #### **REFERENCES:** - 1. Ben Shneiderman, Plaisant, Cohen, Jacobs, "Designing the User Interface: Strategies for Effective Human Interaction", Pearson Education, 5th Edition, 2010. - 2. Laura M. Leventhal, Julie A. Barnes, "Usability Engineering: Process, Products, and Examples", Pearson/Prentice Hall, 2008 # **OUTCOMES:** Students who complete this course will be able to - build effective, flexible and robust user interfaces. - translate system requirements into appropriate human/computer interaction sequences. - choose mode, media and device for the application requirements. #### **INDUSTRIAL SAFETY** L T P C 3 0 0 3 #### **OBJECTIVE:** To understand the various safety measures to be taken in different industrial environments. #### MODULE I SAFETY MANAGEMENT 7 Evolution of modern safety concept- Safety policy - Safety Organization - line and staff functions for safety- Safety Committee- budgeting for safety. safety education and training. ## MODULE II SAFETY IN MANUFACTURING 7 Safety in metal working-Machine guarding -Safety in welding and gas cutting - Safety in cold forming and hot working of metals -Safety in finishing, inspection and testing -Regulation. #### MODULE III SAFETY IN CONSTRUCTION 8 General safety consideration in Excavation, foundation and utilities – Cordoning – Demolition – Dismantling –Clearing debris – Types of foundations – Open footings. Safety in Erection and closing operation - Safety in typical civil structures – Dams-bridges-water Tanks-Retaining walls-Critical factors for failure-Regular Inspection and monitoring. ## MODULE IV ELECTRICAL SAFETY 8 Electrical Hazards – Energy leakage – Clearance and insulation – Excess energy – Current surges – Electrical causes of fire and explosion – National electrical Safety code. Selection of Environment, Protection and Interlock – Discharge rods and earthing device – Safety in the use of portable tools - Preventive maintenance. # MODULE V SAFETY IN MATERIAL HANDLING 8 General safety consideration in material handling devices - Ropes, Chains, Sling, Hoops, Clamps, Arresting gears – Prime movers. Ergonomic consideration in material handling, design, installation, operation and maintenance of Conveying equipments, hoisting, traveling and slewing mechanisms. Storage and Retrieval of common goods of shapes and sizes in a general store of a big industry. #### MODULE VI SAFETY EDUCATION AND TRAINING Importance of training-identification of training needs-training methods – programme, seminars, conferences, competitions – method of promoting safe practice - motivation – communication - role of government agencies and private consulting agencies in safety training – creating awareness, awards, celebrations, safety posters, safety displays, safety pledge, safety incentive scheme, safety campaign – Domestic Safety and Training. **Total Hours: 45** 7 #### **REFERENCES:** - 1. Krishnan N.V, "Safety Management in Industry", Jaico Publishing House, Bombay, 1997. - 2. Blake R.B., "Industrial Safety", Prentice Hall, Inc., New Jersey, 1973. - 3. Fulman J.B., "Construction Safety, Security, and Loss Prevention", John Wiley and Sons, 1979. - 4. Fordham Cooper W., "Electrical Safety Engineering", Butterworths, London, 1986. - 5. Alexandrov M.P., "Material Handling Equipment", Mir Publishers, Moscow, 1981. #### **OUTCOMES:** Students would be able to - Acquire knowledge on various safety Hazards. - Carry out safety measures for different industrial environments.